Parabrachial Nucleus


Labeled brain cells were localized within known gustatory regions, including the rostral central subdivision (RC) of the nucleus of the solitary tract (NST), the principal site where geniculate axons synapse, and the site containing most of the cells that project to the parabrachial nucleus (PBN) of the pons.  

Five general brain regions contained retrogradely labeled neurons: cerebral cortex (infralimbic and insular regions), rostral forebrain structures (subfornical organ, organum vasculosum of the lamina terminalis, taenia tecta, nucleus accumbens, lateral septum, endopiriform nucleus, dorsal BST, substantia innominata, and, most prominently the amygdala-primarily its basomedial and central subnuclei), thalamus (central medial, intermediodorsal, reuniens, and, most prominently the paraventricular thalamic nucleus), hypothalamus (medial preoptic area, perifornical, arcuate, dorsomedial, parasubthalamic, and posterior hypothalamic nuclei), and brainstem (periaqueductal gray matter, dorsal and central superior raphe nuclei, parabrachial nucleus, pre-locus coeruleus region, NTS, and A1 noradrenergic neurons in the caudal ventrolateral medulla).  

Several other regions were labeled including the parts of the amygdala, periaqueductal gray, lateral parabrachial nucleus and deep cerebellar nuclei.  

WGA was not detected in the parabrachial nucleus, or the gustatory cortex.  

Our investigation analyzed behavioral roles for cannabinoid mechanisms of the pontine parabrachial nucleus (PBN) in modulating intake of presumably palatable foods containing fat and/or sugar.  

LY341495-induced c-Fos response was markedly decreased in the medial part of the central amygdala (CeM) and lateral septum (LS) in mGlu3-KO mice, as well as in the lateral parabrachial nucleus (LPB) in both KO strains.  

After injection of biotinylated dextran amine (BDA) into the MVe and SpVe, and fluorogold (FG) into the RVLM, some BDA-labeled fibres and terminals in the nucleus of solitary tract (NTS) and the parabrachial nucleus (PBN) were immunoreactive for VGluT1 and VGluT2.  

The parabrachial nucleus (PBN) is an area of the brain stem that controls eating and contains endogenous opioids and their receptors. In conclusion, this study demonstrates that the mu(1) opioid receptor subtype is present in the parabrachial nucleus of the pons and that these receptors serve to modulate feeding in rats..  

A large number of Fos-like immunoreactive (LI) cells were observed in the Pa5, and half of them were retrogradely labeled with Fluorogold (FG) injected into the parabrachial nucleus.  

Arachidonoyl serotonin (AA5HT), an inhibitor of the endocannabinoid degradative enzyme, fatty acid amide hydolase (FAAH), was infused into the parabrachial nucleus of Male Sprague-Dawley rats and intakes of high-fat/sucrose pellets and standard rodent chow were subsequently evaluated under various feeding schedules. Key words: parabrachial nucleus, endocannabinoids, feeding, reward..  

Nigrostriatal lesion prevented the neuronal activation typically induced by NTG in sub-cortical areas involved in pain perception, autonomic control and neuroendocrine functions, such as hypothalamic nuclei, periaqueductal grey, parabrachial nucleus and the medullary nuclei.  

Injections of a retrograde tracer (Fluorogold) were made into the thalamus, gracile nucleus or lateral parabrachial nucleus to identify spinothalamic, post-synaptic dorsal column or spinoparabrachial projection neurons respectively (n=4 in each group).  

Recent evidence has shown that the serotonergic mechanism of the lateral parabrachial nucleus (LPBN) participates in the regulation of renal and hormonal responses to isotonic blood volume expansion (BVE).  

The groups consisted of controls and rats with excitotoxic lesions in the gustatory thalamus (TTA), the medial (gustatory) parabrachial nucleus (PBN), or the lateral (visceral afferent) parabrachial nucleus.  

The insula has connection with the prefrontal and auditory cortices, amygdala, thalamus, parabrachial nucleus, orbitofrontal cortex, striate, cuneus, and cerebellum. The use of multisensory vibration stimulation (somatosensory and high-frequency jointly) should also be explored to maintain or reprogram the auditory cor tical map and induce activity in the FCP circuit, including the parabrachial nucleus and the in sula, which may be the physiological substrate of tinnitus behavioral tests..  

Opioid mechanisms are involved in the control of water and NaCl intake and opioid receptors are present in the lateral parabrachial nucleus (LPBN), a site of important inhibitory mechanisms related to the control of sodium appetite.  

In the brainstem, Oxt-ir fibers were found in the periaqueductal gray, locus coeruleus, parabrachial nucleus, nucleus of the solitary tract, and nucleus ambiguus.  

Balloon inflation over a 3 h period following Furo-Cap treatment decreased Fos-ir in the organum vasculosum of the lamina terminalis and the subfornical organ and increased Fos-ir in the lateral parabrachial nucleus and caudal ventrolateral medulla.  

To investigate this, we used extracellular single-unit recording in the second central gustatory relay, the pontine parabrachial nucleus while stimulating the tongue with various concentrations of sucrose (0.01-1.5 M) in Otsuka Long Evans Tokushima Fatty (OLETF) rats, lacking CCK-1R.  

Significant decreases in rCBF were seen in the thalamus, parabrachial nucleus, periaqueductal gray, hypothalamus and pons.  

Our combined HRV-fMRI approach demonstrated HF correlation with fMRI activity in the hypothalamus, cerebellum, parabrachial nucleus/locus ceruleus, periaqueductal gray, amygdala, hippocampus, thalamus, and dorsomedial/dorsolateral prefrontal, posterior insular, and middle temporal cortices.  

To determine the role of ADM in the pontine autonomic center, the lateral parabrachial nucleus (LPBN), we used urethane-anesthetized adult Sprague-Dawley male rats to test the hypothesis that ADM increases MAP at this site through glutamate- and nitric oxide (NO)-dependent mechanisms.  

The cold thermal afferent circuit from cutaneous thermal receptors ascends via second-order thermosensory neurons in the dorsal horn of the spinal cord to activate neurons in the lateral parabrachial nucleus, which drive GABAergic interneurons in the preoptic area to inhibit warm-sensitive, inhibitory output neurons of the preoptic area.  

Within the mid- and hindbrain Ngb expressing neurones were found in the laterodorsal tegmental nucleus, the pedunculo pontine tegmental nucleus, the locus coeruleus, and the lateral parabrachial nucleus.  

PPT expression in the lateral parabrachial nucleus also showed preshockxnoise interaction (up after noise in controls, higher basal and down after noise in preshocked), and was increased after noise in the periaquaeductal grey. Altered PPT expression in the parabrachial nucleus may be involved in the altered pain processing seen in this model.  

These brain regions included the rostral ventrolateral medulla (RVLM), lateral parabrachial nucleus (LPBN), hypothalamic paraventricular nucleus (PVN), supraoptic nucleus (SON), and central amygdaloid nucleus (CeA).  

Thus, glutamic acid decarboxylase mRNA-positive neurons represented 12% of cells in the interfascicular nucleus, 30% in the parabrachial nucleus, and 45% in the parainterfascicular nucleus.  

There are two functional pathways for the nasotrigeminal reflex: the spinal nucleus of trigeminal nerve (SPV) to the Kölliker-Fuse (KF) nucleus and the nucleus of solitary tract (NTS) to the lateral parabrachial nucleus (PBl).  

Acute sodium depletion induced by furosemide reduces gustatory responses of parabrachial nucleus (PBN) neurons to 0.3-0.5M NaCl in rats.  

The final common pathway in severe tinnitus is modified to include the parabrachial nucleus, which has been identified by c-fos immunocytochemistry as an active, non-auditory site. The parabrachial nucleus acts in conjunction with the amygdala and insula (part of the medial temporal lobe system) to produce a somatic emotional sense that can result in a "bad" feeling.  

The parabrachial nucleus (PBN) has been strongly associated with taste aversion learning (TAL) acquisition.  

We report that quinine-stimulated gaping behavior was fully restored, and neuronal activity, as assessed by Fos immunohistochemistry in the nucleus of the solitary tract and the parabrachial nucleus, was partially restored only if the posterior tongue (PT) taste receptor cell field was reinnervated; the particular taste nerve supplying the input was inconsequential to the recovery of function.  

In the paraventricular nucleus of the hypothalamus (PAH), lateral hypothalamic area (LH), paraventricular nucleus of the thalamus (PVT), periaqueductal gray matter (PAG), bed nucleus of the stria terminalis (BNST), locus coeruleus (LC), lateral parabrachial nucleus (Pbl), the complex of the solitary tract nucleus (NTS) and dorsal motor nucleus of the vagus nerve (DMX), numbers of neurons expressing c-Fos protein were much higher in test than in control experiments.  

Based on our findings, DMH/PeF efferent targets such as the C1 adrenergic neurons, paraventricular hypothalamus, and the central amygdala are implicated in sympathetic mobilization; the nucleus of the solitary tract is implicated in baroreflex resetting; and the parabrachial nucleus is implicated in respiratory responses.  

We show that single fiber inputs from the nociceptive pontine parabrachial nucleus onto CeAL neurons form suprathreshold glutamatergic synapses with multiple release sites.  

Glutamatergic projections from the parabrachial nucleus to the central amygdala are implicated in pain transmission.  

Inhibitory mechanisms in the lateral parabrachial nucleus (LPBN) and central GABAergic mechanisms are involved in the regulation of water and NaCl intake.  

Hypertonic NaCl intake is produced by serotonin receptor antagonism in the lateral parabrachial nucleus (LPBN) of dehydrated rats or in rats pretreated with a mineralocorticoid, for example deoxycorticosterone (DOCA), that receive an intracerebroventricular injection (icv) of angiotensin II (ang II).  

Evidence suggests that GABA might mediate the inhibitory influence of centrifugal inputs on taste-evoked responses in the parabrachial nucleus (PBN).  

Acute VNS significantly increased c-Fos staining in the nucleus of the solitary tract, paraventricular nucleus of the hypothalamus, parabrachial nucleus, ventral bed nucleus of the stria terminalis, and locus coeruleus but not in the cingulate cortex or dorsal raphe nucleus (DRN).  

Therefore, in this investigation, in vivo microdialysis was used to simultaneously measure the concentration of estrogen in the plasma and in the parabrachial nucleus (PBN) of male Sprague-Dawley rats after MCAO.  

The effect of MCAO on autonomic tone was assessed by monitoring vagal and renal efferent nerve activities before and following systemic administration of either estrogen or saline and the bilateral microinjection of the estrogen receptor antagonist, ICI 182, 780, into several autonomic nuclei (the intrathecal space of the spinal cord, nucleus tractus solitarius, nucleus ambiguus, rostral ventrolateral medulla, parabrachial nucleus, central nucleus of the amygdala or ventral posteromedial thalamus). The presence of ICI 182, 780 in the intrathecal space of the spinal cord, nucleus ambiguous, nucleus tractus solitarius, rostral ventrolateral medulla, parabrachial nucleus, or central nucleus of the amygdala prior to the administration of estrogen resulted in a significant attenuation (ranging from 79% to 94 %) in the estrogen-induced recovery of autonomic function following MCAO.  

CGRP-containing parabrachial neurons projected to the AStr and lateral, capsular, and medial parts of the CE, the projections originating in the external, crescent, and central parts of the lateral parabrachial nucleus and external part of the medial parabrachial nucleus.  

In addition, Dmbx1 was shown to be expressed at embryonic day 15.5 in the lateral parabrachial nucleus, the rostral nucleus of the tractus solitarius, the dorsal motor nucleus of the vagus, and the reticular nucleus in the brainstem, all of which receive melanocortin signaling, indicating involvement of Dmbx1 in the development of the neural network for the signaling.  

Lard-associated changes in c-Fos(+) cell numbers were observed in the nucleus of the tractus solitarius, lateral parabrachial nucleus, central nucleus of the amygdala, ventral tegmental area, nucleus accumbens shell and the prefrontal cortex, and were associated with lower levels of triglycerides and free fatty acids.  

A terminal c-Fos study revealed intact LiCl-induced c-Fos expression in the lateral parabrachial nucleus and central amygdala in DSAP rats, despite significant loss of NST NA neurons and attenuated c-Fos activation of corticotropin-releasing hormone-positive neurons in the paraventricular nucleus of the hypothalamus (PVN).  

The NTS projects to areas in the central nervous system involved in cardiovascular regulation and hydroelectrolyte balance, such as the anteroventral third ventricle region and the lateral parabrachial nucleus.  

In the PB, c-Fos labeling increased specifically within two sites that relay signals from the HSD2 neurons to the forebrain--the pre-locus coeruleus and the innermost region of the external lateral parabrachial nucleus.  

For this, cholera toxin subunit B (CTb), conjugated to a fluorescent marker was injected unilaterally into the parabrachial nucleus.  

The results showed that anorexia and retarded body weight growth were associated with Fos protein expression in the area postrema, the general visceral region of the nucleus of the solitary tract, and the external lateral parabrachial nucleus, structures that also display Fos after peripheral administration of satiating or anorexigenic stimuli.  

as well as some related structures, such as the lateral parabrachial nucleus (cf.  

alpha2-Adrenoceptor activation with moxonidine (alpha2-adrenergic/imidazoline receptor agonist) into the lateral parabrachial nucleus (LPBN) enhances angiotensin II/hypovolaemia-induced sodium intake and drives cell dehydrated rats to ingest hypertonic sodium solution besides water.  

On the stimulated side, they included (1) the nucleus of the tractus solitarius (NTS: the primary sensory nucleus) and (2) the dorsal motor nucleus of the vagus nerve (DMNV), whereas on the contralateral side, they corresponded to (3) the parabrachial nucleus (PBN: the second/higher-ordered nucleus) and (4) the medullary non-NTS region.  

These observations were extended with the studies carried out after brain serotonin depletion, lesions of DRN and during blockade of 5-HT2A/2C receptors in lateral parabrachial nucleus (LPBN).  

Amylin and CCK activate the area postrema (AP)/nucleus of the solitary tract (NTS) - lateral parabrachial nucleus (LPBN) - central amygdala (CeA) pathway.  

NPS is expressed in a few discrete nuclei in the brainstem, such as the pericoerulear (locus coeruleus (LC)) area and the parabrachial nucleus.  

The decrease in the number of c-Fos positive nuclei occurred particularly in the caudal ventrolateral medulla, the medial, intermediate and central parts of the nucleus tractus solitarius, area postrema, parabrachial nucleus, locus coeruleus, paraventricular nucleus of the hypothalamus, ventromedial preoptic area, central amygdala, bed nucleus of the stria terminalis and to a lesser extent in the ventrolateral part of the nucleus tractus solitarius and rostral ventrolateral medulla.  

In the present study, the responses of inhibitory gustatory neurons in the parabrachial nucleus (PBN) to four basic taste stimuli NaCl, HCl, quinine HCl (QHCl) and sucrose were examined using single-unit recording technique in anesthetized rats.  

In contrast, MOR-stimulated [ (35)S]GTPgammaS binding was significantly decreased in most regions examined in morphine pellet+morphine injected mice, including nucleus accumbens, caudate-putamen, periaqueductal gray, parabrachial nucleus, NTS and spinal cord.  

Strong and consistent colabeling was also revealed throughout the hindbrain, predominantly within the periaqueductal gray and the lateral parabrachial nucleus, and within various medullary cell groups identified as catecholaminergic, predominantly C1 and A1 neurons of the ventral medulla.  

GABAergic activation in the lateral parabrachial nucleus (LPBN) induces sodium and water intake in satiated and normovolemic rats.  

Third, pretreatment with D-cycloserine did not increase c-Fos induction by either LiCl or vehicle injection in central visceral relays (the nucleus of the solitary tract, the parabrachial nucleus, the central nucleus of the amygdala, the supraoptic nucleus, and the paraventricular nucleus).  

EM2 was colocalized with SP and CGRP in the nucleus of the solitary tract (NTS) and with SP, CGRP and MOR in the parabrachial nucleus.  

Electrical stimulation of the waist area (W) of the parabrachial nucleus (PBN) in conscious rats elicits stereotypical oromotor behaviors (Galvin et al.  

We speculate that dopamine function in the lateral parabrachial nucleus is involved in migraine without aura..  

Consistent enhancement or a de novo production of sodium intake induced by deactivation of inhibitory nuclei (e.g., lateral parabrachial nucleus) or hormones (oxytocin, atrial natriuretic peptide), in water-deprived, extracellular-dehydrated or, contrary to tradition, intracellular-dehydrated rats, suggests that sodium appetite and thirst share more mechanisms than previously thought.  

CLP increased Fos immunostaining in the nucleus of tractus solitarius (NTS), ventrolateral medulla, medullary raphe, parabrachial nucleus, hypothalamus, amygdala, bed nucleus of stria terminalis, and preoptic region.  

We have examined, by immunocytochemical methods and nociceptive behavior assessment in rats, whether astrocytes in the parabrachial nucleus (PBN) are involved in the regulation of traumatic occlusion.  

The present study investigated the role of several 5-HT receptor subtypes in the lateral parabrachial nucleus (LPBN) in the control of sodium appetite (i.e.  

Isop significantly increased Fos-IR in the nucleus of the solitary tract (NTS), area postrema (AP), rostral ventrolateral medulla (RVLM), and lateral parabrachial nucleus (lPBN); however, EB significantly attenuated the increase in the AP and in the lPBN.  

In this study, retrograde tracing method combined with phosphate-activated glutaminase (PAG) and Fos immunofluorescence histochemistry was used to identify glutamatergic vestibular nucleus (VN) neurons receiving vestibular inputs and projecting to the nucleus of the solitary tract (NTS) and the parabrachial nucleus (PBN).  

Furthermore, we found that labeled cells from the JO nucleus and JC nucleus located in the reticular regions surrounding the trigeminal motor nucleus (Vmo; Vmo shell region) were arranged in a topographic fashion, while those in the parabrachial nucleus, supratrigeminal nucleus, lateral reticular formation caudal to the shell region and raphe nuclei were intermingled with each other.  

Glutamatergic inputs arising from the parabrachial nucleus to neurons in the lateral sector of the central amygdala were studied in vitro.  

However, comparing cold allodynia and equally intense cold pain conditions, we found significantly increased activations in bilateral dorsolateral prefrontal cortices (DLPFC) and the brainstem (ipsilateral parabrachial nucleus) during cold allodynia.  

The goal of this study was to investigate the role of the lateral parabrachial nucleus (LPBN) in mediating dorsal PAG modulation of the arterial baroreflex.  

Neurons located in the nucleus of the solitary tract, caudal ventrolateral medulla, and lateral parabrachial nucleus were activated for

NPR-A-immunoreactive perikarya were found in the red nucleus and the oculomotor nucleus in the midbrain, the parabrachial nucleus and the locus coeruleus in the pons, and the dorsal motor nucleus of the vagus, the hypoglossal nucleus, the cuneate nucleus, the gracile nucleus, the nucleus ambiguus, the lateral reticular nucleus, the reticular formation, and the inferior olivary nucleus in the medulla oblongata. Extensive networks of immunoreactive fibers were apparent in the red nucleus, the oculomotor nucleus, the principal sensory trigeminal nucleus, and the parabrachial nucleus. Double immunostaining revealed NPR-A immunoreactivity in cholinergic neurons of the parabrachial nucleus, the dorsal motor nucleus of vagus, the hypoglossal nucleus, and the nucleus ambiguus.  

We previously have shown that forebrain inputs increase responses of amiloride-sensitive NaCl-best neurons to the conditioned stimulus (CS) in the rat parabrachial nucleus (PBN) after the establishment of conditioned taste aversion (CTA) to NaCl.  

FRA expression affected also at the reentry pontine and diencephalic structures, such as the lateral parabrachial nucleus and the central nucleus of the amygdala, which are known to contribute to the occurrence of pontine waves and the related bursts of REM.  

Associated with I-HEM and F-HEM, but not HYDRAZ treatment were significant increases in FLI in the caudal ventrolateral periaqueductal gray (PAG), the central lateral nucleus of the rostral parabrachial nucleus, and locus coeruleus compared with SAL treatment.  

The results replicated previous findings of significant c-Fos expression in the parabrachial nucleus, the central nucleus of the amygdala and the basolateral amygdala.  

The implications of these findings are discussed with regard to the forebrain influence on parabrachial nucleus function during CTA acquisition..  

In addition, after 4 weeks of HT, the number of Fos immunoreactive neurons was increased in the parabrachial nucleus and the paraventricular nucleus of the hypothalamus.  

In situ hybridisation on mouse brain sections revealed GPCR101 expression in a number of nuclei, including the amygdala, lateral parabrachial nucleus and nucleus of the solitary tract, as well as in the arcuate nucleus, posterior hypothalamus and paraventricular nucleus of the hypothalamus.  

Fluorogold was iontophoresed into the bed nucleus of stria terminalis (BST), central nucleus of the amygdala (CEA), paraventricular nucleus of the hypothalamus (PVN), and the pontine lateral parabrachial nucleus (PBL; an important component of ascending viscerosensensory pathways) followed 2 weeks later by intraperitoneal injection of lipopolysaccharide (LPS, 0.1 mg/kg) or saline.  

Minor PACAP projections with scattered double-labeled neurons originated from the parabrachial nucleus, pericoeruleus area, and caudal regions of the nucleus of the solitary tract and ventrolateral medulla.  

This study investigated the involvement of serotonergic mechanisms of the lateral parabrachial nucleus (LPBN) in the control of sodium (Na+) excretion, potassium (K+) excretion, and urinary volume in unanesthetized rats subjected to acute isotonic blood volume expansion (0.15 M NaCl, 2 ml/100 g of body wt over 1 min) or control rats.  

Many Fos protein-like immunoreactive (Fos protein-LI) cells were expressed in the trigeminal spinal nucleus caudalis (Vc), parabrachial nucleus, parafascicular nucleus, a wide area of the primary somatosensory cortex, anterior cingulate cortex, amygdala, periaqueductal gray, solitary tract nucleus, and lateral hypothalamus following heating of the face during PRO or PEN infusion.  

Microdialysis was employed to investigate whether N-methyl-d-asparatate (NMDA) glutamate receptor mechanisms are involved in the modulation of serotonin (5-hydoxytryptamine, 5-HT) release in the region of the lateral parabrachial nucleus (LPBN) in freely moving rats.  

Striking effects of taste novelty on FLI were found in central amygdala (CNA) and insular cortex (IC) but not in basolateral amygdala (BLA), pontine parabrachial nucleus (PBN), or nucleus of the solitary tract (NTS).  

Among a variety of brain regions including the parabrachial nucleus, amygdala, insular cortex, supramammillary nucleus, nucleus accumbens, and ventral pallidum that are involved in different phases of CTA expression, the enhanced taste sensitivity to facilitate detection of the conditioned stimulus may originate in the central nucleus of the amygdala and the hedonic shift, from positive to negative, may originate in the basolateral nucleus of the amygdala..  

In addition, discrete groups of Drd4-EGFP labelled neurons were observed in the anterior olfactory nucleus, ventral pallidum, and lateral parabrachial nucleus.  

We report here that the majority of NPS-expressing neurons in the LC area and the principal sensory trigeminal nucleus are glutamatergic neurons, whereas many NPS-positive neurons in the lateral parabrachial nucleus coexpress corticotropin-releasing factor (CRF).  

The contribution of the parabrachial nucleus to the mediation of bladder contraction was examined in the rat. Single unit activity was recorded in the parabrachial nucleus with tungsten microelectrodes. Seven units with activity that was correlated with bladder contraction during saline infusion were located in the lateral subnuclei and three units were located in the medial subnuclei of the parabrachial nucleus. Twelve units with activity that was correlated with abnormal bladder contractions were found widely distributed in the parabrachial nucleus. An inverse correlation of activity to normal or abnormal bladder contractions was identified in 11 units in the parabrachial nucleus. Pressure injection of 5 mM CoCl(2) into the parabrachial nucleus was used to block synaptic transmission unilaterally. Normal bladder contractions evoked by saline infusion were disrupted by 5 of 10 injections, 4 of them in the medial subnuclei of the parabrachial nucleus and one in the lateral subnuclei. Abnormal bladder contractions were converted to a normal pattern in nine experiments where CoCl(2) injections lay in the lateral subnuclei of the parabrachial nucleus. In five experiments, CoCl(2) disrupted abnormal bladder contractions; four effective sites were located in the lateral subnucleus and one lay in the medial subnucleus of the parabrachial nucleus.  

Compared with saline treatment, LiCl increased Fos only slightly in the area postrema, nucleus of the solitary tract, and lateral parabrachial nucleus on P0.  

During receipt, activation within the brainstem included the PAG, VTA, rostral ventromedial medulla (RVM), and the parabrachial nucleus (PB), all elements of descending pain pathways.  

Atipamezole, an alpha(2)-adrenoceptor antagonist, or saline was administered systemically or microinjected into the locus coeruleus, the lateral parabrachial nucleus, the central nucleus of the amygdala, the midbrain periaqueductal gray, and/or through an intrathecal (i.t.) catheter to the spinal cord. Atipamezole (0.3-5 microg) microinjected into the pons, the locus coeruleus or the lateral parabrachial nucleus, produced a selective and dose-related antiallodynia, which was reversed by i.t.  

The average number of Fos-positive cells in the parabrachial nucleus (PBN) was significantly increased only by rehydration (Con 12+/-2; Dehyd 6+/-2; Rehyd 51+/-4).  

Extratelencephalic reciprocal connections are with the substantia nigra, nucleus subceruleus dorsalis, parabrachial nucleus, locus coeruleus, and nucleus of the solitary tract.  

The results show that the rostral part of the paratrigeminal nucleus projects to the medial subnucleus of the parabrachial nucleus. The intermediary part of the paratrigeminal nucleus projects to both the external lateral and to the external medial subnuclei of the parabrachial nucleus. The caudal part of the paratrigeminal nucleus projects to the ventral lateral subnucleus of the parabrachial nucleus. The dorsal paramarginal nucleus projects to the external lateral and the extreme lateral subnuclei of the parabrachial nucleus. Lamina I and II of the spinal trigeminal nucleus also project to the external lateral and the extreme lateral subnuclei of the parabrachial nucleus.  

The HSD2 neurons project mainly to the ventrolateral bed nucleus of the stria terminalis (BSTvl), the pre-locus coeruleus (pre-LC), and the inner division of the external lateral parabrachial nucleus (PBel).  

To investigate whether neural nitric oxide synthase (nNOS) in the parabrachial nucleus (PB) is involved in processing visceral noxious stimulation, we mapped the distribution of histochemical staining for nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d), a marker for nNOS, and immunohistochemical staining for Fos, a neuronal activity marker, in the subnuclei of the PB following 2% formalin injection into the stomach of rats.  

The NAcc keeps projections with amygdala, insular cortex, parabrachial nucleus, and nucleus of the solitary tract areas important for taste memory formation.  

The inhibition of sodium intake by increased plasma osmolarity may depend on inhibitory mechanisms present in the lateral parabrachial nucleus. Activation of alpha(2)-adrenergic receptors in the lateral parabrachial nucleus is suggested to deactivate inhibitory mechanisms present in this area increasing fluid depletion-induced 0.3 M NaCl intake. Considering the possibility that lateral parabrachial nucleus inhibitory mechanisms are activated and restrain sodium intake in animals with increased plasma osmolarity, in the present study we investigated the effects on water and 0.3 M NaCl intake produced by the activation of alpha(2)-adrenergic receptors in the lateral parabrachial nucleus in rats with increased plasma osmolarity. Male Holtzman rats with stainless steel cannulas implanted bilaterally into the lateral parabrachial nucleus were used. One hour after intragastric 2 M NaCl load (2 ml), bilateral injections of moxonidine (alpha(2)-adrenergic/imidazoline receptor agonist, 0.5 nmol/0.2 microl, n=10) into the lateral parabrachial nucleus induced a strong ingestion of 0.3 M NaCl intake (19.1+/-5.5 ml/2 h vs. However, moxonidine into the lateral parabrachial nucleus in satiated rats not treated with 2 M NaCl produced no change on 0.3 M NaCl intake. The pre-treatment with RX 821002 (alpha(2)-adrenergic receptor antagonist, 20 nmol/0.2 microl) into the lateral parabrachial nucleus almost abolished the effects of moxonidine on 0.3 M NaCl intake (4.7+/-3.4 ml/2 h). The present results suggest that alpha(2)-adrenergic receptor activation in the lateral parabrachial nucleus blocks inhibitory mechanisms, thereby allowing ingestion of hypertonic NaCl under conditions of extracellular hyperosmolarity. We suggest that during cell dehydration, circuits subserving sodium appetite are activated, but at the same time strongly inhibited through the lateral parabrachial nucleus..  

Fewer neurotensinergic, VTA-projecting neurons are situated in the dorsal raphe, pedunculopontine and laterodorsal tegmental nuclei, lateral hypothalamic area, ventral endopiriform area, lateral septum, accumbens shell, parabrachial nucleus and different parts of the extended amygdala.  

On the other hand, the superficial laminae of the spinal dorsal horn, where many nociceptive neurons are distributed, have been reported to contain projection neurons innervating both the parabrachial nucleus (PBN) and thalamus by way of axon collaterals (Hylden et al., 1989).  

RATIONALE: Acute pharmacological studies implicate mu-opioid receptors (MORs) in the parabrachial nucleus (PBN) of the brainstem in modulating eating.  

Capsaicin also produced increases in BOLD signal intensity in other regions that contribute to pain processing, such as the parabrachial nucleus and superior colliculus.  

The MOPR agonist DAMGO inhibited 9/9 CeM neurons with projections to the parabrachial nucleus identified by retrograde tracer injection.  

The steroid hormone 17beta-estradiol and its respective receptors have been found in several cardiovascular nuclei in the central nervous system including the parabrachial nucleus. In this study we sought to enhance the comprehensive information provided previously on estradiol's postsynaptic effects in the parabrachial nucleus by directly examining whether 17beta-estradiol application will modulate excitatory synaptic neurotransmission. Using a pontine slice preparation and whole-cell patch-clamp recording, bath application of either 17beta-estradiol (20-100 muM) or BSA-17beta-estradiol (50 muM) decreased the amplitude of evoked excitatory postsynaptic currents (from 30-60% of control) recorded from neurons in the parabrachial nucleus. In summary, 17beta-estradiol caused 3 effects: first, a depolarization; second, a reduction in evoked excitatory postsynaptic potentials; and third, an enhancement of action potential firing frequency in neurons of the parabrachial nucleus.  

Label was found in many brainstem areas, but fibers with varicosities were noted in specific subdivisions of the nucleus tractus solitarii and parabrachial nucleus, as well as parts of the caudal and rostral ventrolateral medulla and A5 (noradrenergic cell group in ventrolateral pons) area.  

TH-positive neurons expressing neither AADC nor VMAT2 are termed "dopaergic TH neurons." We identified these neurons in supraoptic, paraventricular and periventricular hypothalamic nuclei, thalamic paraventicular nucleus, habenula, parabrachial nucleus, cerebral cortex and spinal cord.  

A prior retrograde tracing study revealed only a minor projection from the HSD2 neurons directly to the CeA, but these experiments suggested that a more substantial projection may be relayed through the parabrachial nucleus.  

The pontine parabrachial nucleus is a major relay area for visceral and other interoceptive information, and has been implicated in mechanisms underlying anorexia and food aversion during disease. Thus, physiological studies have shown that peripheral immune stimuli, as well as the administration of aversive substances such as lithium chloride, evoke a prominent Fos-expression in the lateral parabrachial nucleus and behavioral experiments have demonstrated that this structure is critical for the acquisition of conditioned taste aversion.  

The dorsolateral pons around the parabrachial nucleus including the Kölliker-Fuse nucleus is closely linked with the medullary respiratory center and plays an important role in respiratory control.  

Major integrative sites are the nucleus of the tractus solitarius, the lateral parabrachial nucleus, the midbrain raphé nuclei, the median preoptic nucleus, and the septum.  

The HSD2 neurons project mainly to the ventrolateral bed nucleus of the stria terminalis (BSTvl), the pre-locus coeruleus (pre-LC), and the inner division of the external lateral parabrachial nucleus (PBel).  

NPW-ir fibers were observed in several brain regions, including the lateral septum, bed nucleus of the stria terminalis, dorsomedial and posterior hypothalamus, central amygdaloid nucleus, CA1 field of hippocampus, interpeduncular nucleus, inferior colliculus, lateral parabrachial nucleus, facial nucleus, and hypoglossal nucleus.  

The insular and anterior cingulate cortices, amygdala, hypothalamus, periaqueductal grey, parabrachial nucleus, nucleus of the solitary tract, ventrolateral medulla and raphe nuclei receive converging nociceptive and visceral inputs from the spinal and trigeminal dorsal horns and initiate arousal, affective, autonomic, motor and pain modulatory responses to painful stimuli.  

The parabrachial nucleus (PB) is known to mediate key respiratory reflexes and is also considered a principle component of the mammalian vocal motor pathway, making it a likely site for vocal-respiratory interactions, yet a specific role for the PB in vocalizing has yet to be demonstrated.  

Preconditioning microinfusion of AS-ODN directed against c-fos mRNA (c-fos AS-ODN) into the parabrachial nucleus (PBN) impaired the acquisition, whereas infusion of control ODNs consisting of a randomized or inverted base order had no effect.  

In addition, we found that the ventromedial nucleus of the hypothalamus and the pontine parabrachial nucleus provide a moderate ENK input to the CEA and MEA.  

A microdialysis technique was used to monitor changes in serotonin (5-HT), 5-hydroxyindole acetic acid (5-HIAA) and dopamine (DA) in the extracellular space of the parabrachial nucleus (PBN) of rats to estimate the contribution of these neurotransmitter systems to the acquisition of conditioned taste aversion (CTA).  

Lesions of the lateral parabrachial nucleus (LPBN) impair blood pressure recovery after hypotensive blood loss (Am J Physiol Regul Integr Comp Physiol 280: R1141, 2001).  

Previous studies have produced mixed results about the role of the ventral tegmental area, periaqueductal gray and parabrachial nucleus in morphine discriminations, perhaps owing to the considerably different methodologies used. Rats were then implanted with one cannula aimed at the lateral ventricle (intracerebroventricular) and one aimed at the ventral tegmental area, periaqueductal gray or parabrachial nucleus. In variable interval-trained rats, intrasite infusions of morphine (0.3-10 microg) produced maximal drug-appropriate responding of approximately 57% (ventral tegmental area), 56% (periaqueductal gray) and 41% (parabrachial nucleus); mean maximal substitution was slightly (< or = 17%) greater in fixed ratio-trained rats. When injected into the ventral tegmental area or periaqueductal gray, but not the parabrachial nucleus, naloxone methiodide (2 microg) significantly decreased drug-appropriate responding following 3.0 mg/kg subcutaneous morphine, in both variable interval-trained and fixed ratio-trained rats. The time course of the discriminative stimulus effects of morphine differed among the three brain sites: intraventral tegmental area morphine produced peak drug-appropriate responding by 15 min after injection, whereas the discriminative stimulus effects of intraperiaqueductal gray and intraparabrachial nucleus morphine peaked at approximately 60 min after injection. Taken together, these results indicate that ventral tegmental area, periaqueductal gray and parabrachial nucleus each play a role in the ability of morphine to function as a discriminative stimulus, regardless of the sex of the subject or the schedule under which the subjects are responding. Ventral tegmental area and periaqueductal gray, however, appear to be more critical than parabrachial nucleus in mediating the discriminative effects of systemic morphine in rats responding under a food reinforcement procedure.  

BayK 8644-induced Fos expression in Ca(V)1.2(DHP-/-) mice indicating predominantly Ca(V)1.3 L-type calcium channel-mediated activation was noted in more restricted neuronal populations (20 of 80), in particular in the central amygdala, the bed nucleus of the stria terminalis, paraventricular hypothalamic nucleus, lateral preoptic area, locus coeruleus, lateral parabrachial nucleus, central nucleus of the inferior colliculus, and nucleus of the solitary tract.  

PET studies indicated that mechanical distention of the stomach with a balloon (a non-nutritive stimulus) was associated with the activation of several brain loci, including those associated with vagal activation (parabrachial nucleus), emotive aspects of eating (lateral inferior frontal and orbitofrontal), and depressive symptoms (anterior cingulate).  

We examined projections from the NTS to autonomic targets within the hypothalamus (paraventricular nucleus, PVN), pons (parabrachial nucleus, PB), and medulla (caudal ventrolateral medulla, CVL) using retrograde tracing and immunohistochemistry.  

The major findings are: (1) The transfer ratio (LGN firing/retinal firing) fluctuated slowly and (2) these fluctuations in transfer ratio were synchronized across the nucleus, did not depend on visual stimulation, and were highly correlated with neural activity in the parabrachial nucleus of the brainstem (PBN).  

Most recorded neurons were localized in the Kölliker-Fuse and medial parabrachial nuclei, but some were also found in lateral parabrachial nucleus, intertrigeminal nucleus, principal trigeminal sensory nucleus, and supratrigeminal nucleus.  

Retrograde labeling in the brainstem was generally more modest, but labeling was strong in the periaqueductal gray matter, dorsal raphe nucleus, and lateral parabrachial nucleus.  

Previous studies using non-specific serotonergic agonists and antagonists have shown the importance of serotonergic inhibitory mechanisms in the lateral parabrachial nucleus (LPBN) for controlling sodium and water intake.  

The present study investigated the role of corticotropin-releasing hormone (CRH) in the lateral parabrachial nucleus (LPBN) in the behavioral control of body fluid homeostasis by determining the effect of bilateral injections of the CRH receptor antagonist, alpha-helical corticotropin-releasing factor (CRF)(9-41), and the CRH receptor agonist, CRH, on sodium chloride (salt appetite) and water (thirst) intake.  

We previously reported that lesions of the medial parabrachial nucleus (PBN) enhanced d-fenfluramine (DFEN)-induced anorexia; a finding that suggests these lesions may potentiate the release of serotonin (5HT) or increase the postsynaptic action of 5HT.  

The present investigation sought to determine the role of estrogen injected directly into the parabrachial nucleus (PBN) on the MCAO-induced sympathoexcitation as well as the role of the rostral ventrolateral medulla (RVLM) in mediating the sympathoexcitatory response.  

Rehydration with water significantly decreased AVP levels and Fos staining in the SON, PVN, and RVL and significantly increased Fos expression in the perinuclear zone of the SON, NTS, and parabrachial nucleus. Changes in Fos staining were also observed in the NTS, RVL, parabrachial nucleus, and PVN.  

Caudal to the diencephalon, retrograde labelling from either site was sparse, except in the lateral parabrachial nucleus, which displayed a particularly high incidence from the GnRH perikarya site.  

In addition, c-Fos expression in the crescent part of the lateral parabrachial nucleus was decreased in PBG-injected mice whereas no significant differences were detected between PBG-injected and control mice in the number of c-Fos-positive nuclei in the dorsal part of the lateral parabrachial nucleus.  

Combined with previous evidence that major sources of LHAsfa neural inputs include the parabrachial nucleus (nociceptive information), defensive and foraging behavior system components, and the septo-hippocampal system, the present results suggest that the LHAsfa helps match adaptive behavioral responses (either defensive or foraging) to current internal motivational status and external environmental conditions..  

Injections of the retrograde pathway tracer wheat germ agglutinin conjugated with horseradish peroxidase (WGA-HRP) were made into dorsal/ventral striatum (DS/VS), basolateral amygdala (BLA), mediodorsal thalamus (MD), lateral hypothalamus (LH), mediolateral septum, dorsolateral periaqueductal gray, dorsal raphe, ventral tegmental area, parabrachial nucleus, nucleus tractus solitarius, rostral/caudal ventrolateral medulla, or thoracic spinal cord (SC).  

Following refeeding, c-fos expression is induced in a particular set of brain regions that include the nucleus of the solitary tract (NTS), parabrachial nucleus (PB), central amygdala (CeA), paraventricular hypothalamic nucleus (PVH), supraoptic nucleus (SON) and the circumventricular organs.  

The pontine parabrachial nucleus (pPB) sends a massive projection to the central nucleus of the amygdala (CeA) and lateral bed nucleus of the stria terminalis (BSTL), both regions belonging to a broader macrostructure, the central extended amygdala (EAc).  

We tested this hypothesis by examining the effects of 17beta-estradiol on outward potassium currents recorded in cells from the parabrachial nucleus of rats, in vitro.  

At 30 min of cold exposure, neurons in all known thermoregulatory areas (like the ventrolateral part of the medial preoptic nucleus, the lateral retrochiasmatic area, the lateral parabrachial nucleus and the peritrigeminal nucleus) were already maximally activated.  

Our previous studies have demonstrated that stimulation of cardiac sympathetic afferents activates neurons in the parabrachial nucleus (PBN), a region known to play a role in central integration of cardiovascular autonomic reflexes.  

Inhibitory serotonergic and cholecystokinergic mechanisms in the lateral parabrachial nucleus and central GABAergic mechanisms are involved in the regulation of water and NaCl intake. In the present study we investigated if the GABA(A) receptors in the lateral parabrachial nucleus are involved in the control of water, NaCl and food intake in rats. Male Holtzman rats with stainless steel cannulas implanted bilaterally into the lateral parabrachial nucleus were used. Bilateral injections of muscimol (0.2 nmol/0.2 microl) into the lateral parabrachial nucleus strongly increased 0.3 M NaCl (20.3+/-7.2 vs. In euhydrated and satiated rats, bilateral lateral parabrachial nucleus injections of muscimol (0.2 and 0.5 nmol/0.2 microl) induced 0.3 M NaCl intake (12.1+/-6.5 and 32.5+/-7.3 ml/180 min, respectively, vs. Bilateral lateral parabrachial nucleus injections of the GABA(A) antagonist bicuculline (1.6 nmol/0.2 microl) abolished the effects of muscimol (0.5 nmol/0.2 microl) on 0.3 M NaCl and water intake. Muscimol (0.5 nmol/0.2 microl) into the lateral parabrachial nucleus also induced a slight ingestion of water (4.2+/-1.6 ml/240 min vs. Therefore the activation of GABA(A) receptors in the lateral parabrachial nucleus induces strong NaCl intake, a small ingestion of water and pressor responses, without changes on food intake..  

Nitroglycerin and sodium nitroprusside induced a similar pattern of neuronal activation in several areas, which include the paraventricular and supraoptic nuclei of the hypothalamus, central nucleus of the amygdala, parabrachial nucleus, locus coeruleus, ventrolateral medulla and nucleus tractus solitarius.  

We also examined effect of the extract on potassium currents recorded from cells in parabrachial nucleus and cerebellum rejoins of rat brain. Application of the extract (1-50 microg/ml) shifted the activation threshold voltage to more negative potentials, leading to an enhancement in magnitude of the outward potassium current recorded from cells present in rat brain slices of parabrachial nucleus and cerebellum.  

Similar comparisons also detected decreases in Fos-IR neurons induced by IL-1beta in the VLM A1, VLM C1 and NTS A2 catecholamine cell groups, area postrema, and parabrachial nucleus.  

The origin of thalamic dopamine is multiple, and thus more complex, than in any other dopaminergic system defined to date: dopaminergic neurons of the hypothalamus, periaqueductal gray matter, ventral mesencephalon, and the lateral parabrachial nucleus project bilaterally to the monkey thalamus.  

The anuran CeA was revealed as the main component of the amygdaloid autonomic system, showing important connections with brainstem centers such as the parabrachial nucleus and the nucleus of the solitary tract.  

Other autonomic brainstem nuclei, including the parabrachial nucleus, locus coeruleus, A1 and A5 noradrenergic cell groups, and C1 adrenergic cell group, were labeled.  

Moderate binding stimulation (5-13%) was observed in thalamus, substantia nigra pars compacta, parabrachial nucleus, locus coeruleus and dorsal raphe nucleus.  

FluoroGold retrograde tracer injections confirmed that noradrenergic projections to the arcuate nucleus are from ventrolateral medulla and noradrenergic projections to periventricular nucleus arise from the ventrolateral medulla, nucleus of solitary tract, locus coeruleus (LC) and the parabrachial nucleus (PBN).  

Barrington's nucleus, the ventrolateral medulla, and the nucleus of the solitary tract contained spinal-projecting ER-alpha-IR neurons, whereas ER-alpha-IR neurons in the periaqueductal gray, parabrachial nucleus, and catecholaminergic A1 cell group received spinal input.  

To determine whether axonal terminals emanating from the central nucleus of amygdala (Ce) to the parabrachial nucleus (PBN) contain gamma-aminobutyric acid (GABA) as their neurotransmitter, an electron microscopic study was performed employing the combined techniques of WGA-HRP anterograde tracing and post-embedding immunocytochemistry for GABA. Our analysis distinguished a large population of GABA immunopositive axonal terminals from the Ce that exhibited symmetrical synaptic contacts with neurons in the lateral parabrachial nucleus. The present study provides the first direct ultrastructural evidence for a monosynaptic, GABAergic link between Ce axons and neurons of the parabrachial nucleus via classical symmetrical synapses..  

Associated with the pressor response, the neuronal activity marked with c-fos was enhanced significantly in the fetal anterior third ventricle (AV3V) region (including the median preoptic nucleus and organum vasculosum of the lamina terminalis) in the forebrain, and in the area postrema, lateral parabrachial nucleus, nucleus tractus solitary, and rostral ventrolateral medulla in the hindbrain.  

Subsequent administration of FG through the dialysis probe retrogradely in labeled neurons in brain structures associated with the feeding response including the frontal cortex, amygdala, nucleus accumbens (NA), preoptic areas, substantia nigra, ventral tegmental area (VTA), parabrachial nucleus, and the nucleus of the solitary tract (NST).  

A probable site of action in the caudal brainstem for benzodiazepines is the parabrachial nucleus.  

The nucleus of the solitary tract (NTS) relays this effect to higher brain structures, the lateral parabrachial nucleus, and possibly the central nucleus of the amygdala and the bed nucleus of the stria terminalis.  

nNOS Neurons were localized in several nuclei throughout the brainstem; the dorsolateral periaqueductal gray, pedunculopontine tegmental nucleus, dorsal raphe nucleus, laterodorsal tegmental nucleus, lateral parabrachial nucleus, rostral ventrolateral medulla, nucleus tractus solitarius and raphe magnus.  

The objectives of this study were to (1) demonstrate that respiratory rhythms are entrained by sensory input from somatic afferents, (2) establish whether the parabrachial nucleus mediates entrainment, (3) examine responses of single respiratory neurons in the ventral respiratory group (VRG) to somatic afferent stimulation, and (4) use a computational model of the pontomedullary respiratory network (Rybak et al., 2004a,b) to suggest neuronal mechanisms for entrainment. Reversible blockade of the lateral parabrachial nucleus eliminated entrainment. Our experimental and modeling results demonstrate that an entrainment pathway from somatic afferents to the VRG via the lateral parabrachial nucleus causes resetting of respiratory rhythm through excitation of E2 and consequent inhibition of post-I neurons..  

We wanted to ascertain whether the lateral parabrachial nucleus was involved in mediating the heart-rate response evoked during stimulation of somatic nociceptors. Reversible inactivation of the lateral parabrachial nucleus, using a GABA(A) agonist, reduced the reflex tachycardia evoked during noxious (mechanical) stimulation of the forelimb by approximately 50%. The same effect was observed after blockade of neurokinin 1 receptors within the lateral parabrachial nucleus, indicating a possible involvement for substance P as a neurotransmitter. However, only a minority of these neurons followed a paired-pulse stimulation protocol applied to the spinal cord, suggesting a predominance of indirect projections from the spinal cord to the parabrachial nucleus.  

However, we conclude that the CPA projects preferentially to the subnucleus reticularis dorsalis, commissural nucleus tractus solitarii, lateral medulla, A5 area, and internal lateral parabrachial nucleus.  

Second, anterior vermis also forms a microcomplex with the parabrachial nucleus. Fourth, the medial portion of the uvula may form a module with the nucleus tractus solitarius and parabrachial nucleus. Fifth, the lateral edge of the nodulus and the uvula, together with the parabrachial nucleus and vestibular nuclei, forms a cardiovascular microcomplex that controls the magnitude and/or timing of sympathetic nerve responses and stability of the mean arterial blood pressure during changes of head position and body posture.  

Other labeled structures included the superior lateral parabrachial nucleus, the facial, hypoglossal and trigeminal motor nuclei, the nucleus incertus, the dorsal tegmental nucleus, the dorsal raphe nucleus, the nucleus of the trapezoid body, and the superficial layers of the dorsal horn of the spinal cord.  

Taste responses in the parabrachial nucleus (PBN) are significantly affected by stimulation or lesion of the central nucleus of the amygdala (CeA).  

Immunoreactive fibers of varying density were noted in bed nucleus of stria terminalis, septal nuclei, nucleus accumbens, caudate putamen, diagonal band, amygdala, hypothalamus, zona incerta, thalamus, periaqueductal gray, raphe nuclei, lateral parabrachial nucleus, locus coeruleus, spinal trigeminal tract, rostral ventrolateral medulla, and medullary reticular nucleus.  

Within the pons, a significant FLI was observed bilaterally in the parabrachial nucleus (especially in its lateral subnucleus), the Kolliker-Fuse nucleus, the nucleus coeruleus, within the medial region of brachium conjunctivum, in the ventrolateral part of the pontine FTG and the FTL.  

Important inhibitory mechanisms involving serotonin and other neurotransmitters in the control of water and NaCl intake have been demonstrated in the lateral parabrachial nucleus (LPBN).  

Peripheral nociceptive stimulation results in activation of neurons in the pontine parabrachial nucleus (PB) of rats. While these data provide direct functional anatomical evidence that nociceptive information from the hindlimb is relayed to the amygdala via the parabrachial nucleus, the number of parabrachio-amygdaloid neurons involved is small.  

In the lower brainstem, labeled cells were found in the pontine reticular formation, median and dorsal raphe nuclei, medial parabrachial nucleus, and locus coeruleus.  

The visceral synaptic input to the brain stem arrives at the dorsal vagal complex and is transmitted directly from the nucleus of the solitary tract (NST) or via the parabrachial nucleus (PBN) to hypothalamic nuclei and other areas of the forebrain.  

The dorsolateral pons around the parabrachial nucleus is an important participant in respiratory control.  

The central amygdaloid nucleus (CeA) receives projection from the parabrachial nucleus (PBN) gustatory neurons and descendingly projects to the PBN, and taste responses in the PBN are significantly affected by stimulation or lesion of the CeA.  

The main sources of input to nucleus reuniens were from the orbitomedial, insular, ectorhinal, perirhinal, and retrosplenial cortices; CA1/subiculum of hippocampus; claustrum, tania tecta, lateral septum, substantia innominata, and medial and lateral preoptic nuclei of the basal forebrain; medial nucleus of amygdala; paraventricular and lateral geniculate nuclei of the thalamus; zona incerta; anterior, ventromedial, lateral, posterior, supramammillary, and dorsal premammillary nuclei of the hypothalamus; and ventral tegmental area, periaqueductal gray, medial and posterior pretectal nuclei, superior colliculus, precommissural/commissural nuclei, nucleus of the posterior commissure, parabrachial nucleus, laterodorsal and pedunculopontine tegmental nuclei, nucleus incertus, and dorsal and median raphe nuclei of the brainstem.  

Water and NaCl intake is strongly inhibited by the activation of alpha(2)-adrenergic receptors with clonidine or moxonidine (alpha(2)-adrenergic/imidazoline agonists) injected peripherally or into the forebrain and by serotonin and cholecystokinin in the lateral parabrachial nucleus (LPBN).  

TMT presentation, especially with amounts (> or =75 micromol) producing endocrine activation, induced c-fos mRNA in several brain areas, including the olfactory bulb, lateral septal nucleus, septohypothalamic nucleus, anteromedial and oval nuclei of the bed nucleus of the stria terminalis, the central nucleus of the amygdala, the anteroventral, anterodorsal, and medial preoptic nuclei, the anterior, dorsomedial, lateral, supramammillary, dorsal premammillary and paraventricular hypothalamic nuclei, the external lateral parabrachial nucleus, the locus coeruleus, and the nucleus of the solitary tract.  

A significant increase of Fos immunoreactive cells were observed in the solitary tract nucleus, locus ceruleus, lateral parabrachial nucleus, ventrolateral part of central gray, medial amygdaloid nucleus, central amygdaloid nucleus, ventromedial part of thalamus, dorsomedial part of thalamus, hypothalamic paraventricular nucleus, lateral habenula, and lateral septum nucleus following SEB challenge.  

Secretin (40 or 100 microg/kg, i.p., 90 min) induced a dose-related increase in the number of Fos positive neurons in the central nucleus of the amygdala (CeA), and a plateau Fos response in the area postrema (AP), nucleus tractus solitarii (NTS), locus coeruleus (LC), Barrington's nucleus (Bar), external lateral subnucleus of parabrachial nucleus (PBel) and arcuate nucleus, and at 100 microg/kg, in the dorsal motor nucleus of the vagus (DMV) compared with i.p.  

Neurons projecting to the thalamus are thought to be involved in sensory-discriminative aspects of pain perception, while neurons projecting to the parabrachial nucleus are thought to be important for emotional and/or autonomic responses to noxious stimuli.  

Morphological features and functional implications of projections of the parabrachial nucleus to the central nucleus of the amygdala were investigated in the rat. An extremely dense concentration of labeled fibers was found in the lateral and lateral capsular subdivisions of the central nucleus of the amygdala, originating mainly from the external lateral and ventral lateral subnuclei of the parabrachial nucleus. With this approach, we were able to confirm that Fos-immunoreactive neurons in the central nucleus of the amygdala receive axosomatic terminals from the parabrachial nucleus.  

This nucleus receives projections from the parabrachial nucleus, a brainstem area that has a high density of GlyRs, and from the insular cortex, a forebrain structure devoid of GlyRs. We observed EGFP-labelled neurones in the parabrachial nucleus, but not in the insular cortex, indicating that the 5.4-kb GlyR alpha1 subunit gene promoter confers specificity of expression.  

Several regions within the pons contained AR-ir, such as the tegmental and central gray, parabrachial nucleus, locus coeruleus, Barrington's nucleus, periaqueductal gray, and dorsal raphe.  

A parallel Fos detection indicates that this discrepancy may be due to the excitatory action of the medial parabrachial nucleus at the rostral pontine level that surpasses inhibitory influence of the adenosine A1 receptor activation at the medullary level particularly in the ventrolateral reticular nucleus of the medulla. Depending on Fos detection, we assume that the medial parabrachial nucleus is the main region involved in the exaggeration of Rf. Based on Fos detection, we link the overcharge in Rf of pontomedullary spinal cord preparations to an increase in the medial parabrachial nucleus neuronal activity.  

Among several brain regions, warm exposure elicited c-fos expression specifically in the ventrolateral part of the medial preoptic area, the central subdivision of the lateral parabrachial nucleus and the caudal part of the peritrigeminal nucleus, whereas cold stress resulted in c-fos expression in the ventromedial part of the medial preoptic area, the external subdivision of the lateral parabrachial nucleus and the rostral part of the peritrigeminal nucleus.  

c-Fos immunoreactivity was significantly increased in rats receiving acid plus pepsin perfusion in amygdala (AM), paraventricular nucleus (PVN), parabrachial nucleus (PBN), nucleus tractus solitarius and dorsal motor nucleus of vagus (NTS/DMV), nucleus ambiguous (NA), reticular nucleus of medulla (RNM) and area postrema (AP).  

Increasing the frequency of stimulation induced c-Fos expression in further nuclei such as the parabrachial nucleus (PBN), the inferior olive subnuclei (IOn), the oral part of spinal trigeminal nucleus (Sp5O) and locus coeruleus (LC).  

By the use of the c-fos expression analysis, we correlated these effects with neuronal activity changes, particularly, in vivo in two key structures between the respiratory ponto-medullary network and the peripheral or suprapontine afferences, namely the commissural subnucleus of the nucleus of the solitary tract and the lateral parabrachial nucleus.  

administration of ADM (1 nmol/kg, 3 nmol/kg), Fos-like immunoreactivity neurons were markedly increased in several brain areas of the rat, including the nucleus of the solitary tract (NTS), the area postrema, the locus coeruleus, the parabrachial nucleus and the nucleus paragigantocelluaris laterialis (PGL) in the brainstem, the paraventricular nucleus (PVN), the supraoptic nucleus (SON) and the ventromedial hypothalamic nucleus in the hypothalamus, as well as the central amygdaloid nucleus and the lateral habenular nucleus in the forebrain.  

Using Fos immunolabelling as a marker of neuronal activation, we investigated the role of the parabrachial nucleus in generating central neuronal responses to the systemic administration of the proinflammatory cytokine interleukin-1beta (1 microg/kg, i.a.). Relative to intact animals, parabrachial nucleus lesions significantly reduced the number of Fos-positive cells observed in the central amygdala (CeA), the bed nucleus of the stria terminalis (BNST), and the ventrolateral medulla (VLM) after systemic interleukin-1beta. These results suggest that the parabrachial nucleus plays a critical role in interleukin-1beta-induced Fos expression in CeA, BNST and VLM neurons and that neurons of the NTS and VLM may serve to trigger or at least influence changes in parabrachial nucleus activity that follows systemic interleukin-1beta administration..  

Taken together with previous findings showing that discrete peptidergic cell groups mediate nociceptive and/or visceral afferent information to distinct brain stem and forebrain regions, the present results suggest that the processing of this information in the parabrachial nucleus is influenced by prostaglandin E2. Recent work has shown that prostaglandin E2 is released into the brain following peripheral immune challenge; hence, the parabrachial nucleus may be a region where humoral signaling of peripheral inflammatory events may interact with neuronal signaling elicited by the same peripheral processes..  

Intracolonic TNBS induced c-fos mRNA expression in brain nuclei involved in the autonomic, behavioral, and neuroendocrine response to a stimulus (PVN, amygdala, locus coeruleus, parabrachial nucleus, nucleus of the solitary tract) and in circumventricular organs (lamina terminalis, subfornical organ, area postrema).  

In this study, immunohistochemical localization of substance P and two centrally prevalent neurokinin receptors, NK1 and NK3, was carried out in the rostral nucleus of the solitary tract and the caudal parabrachial nucleus to evaluate regional receptor/ligand correspondences. In the caudal parabrachial nucleus, substance P and NK1 receptor immunoreactivities were dense in the pontine taste area, while NK3 receptor labeling was sparse.  

GLP-2R mRNA transcripts were localized by in situ hybridization to the hippocampus, hypothalamus, nucleus of the solitary tract, parabrachial nucleus, supramammillary nucleus, and substantia nigra.  

jejuni activated visceral sensory nuclei in the brainstem (the nucleus of the solitary tract and the lateral parabrachial nucleus) both one and two days after the oral challenge.  

Using these reporter transgenes as sensitive markers for renin and angiotensinogen expression, we conclude that both proteins are coexpressed in the parabrachial nucleus and central nucleus of the amygdala and are in adjacent cells in the RVLM, reticular formation, bed nucleus of the stria terminalis, subfornical organ, and CA1-3 region.  

The present study was carried out to investigate whether 0.3 M NaCl and water intake alters the release of serotonin (5-hydoxytryptamine, 5-HT) in the region of the lateral parabrachial nucleus (LPBN) in freely moving rats.  


-
[ View All ]