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Abstract: Ordered set theory provides eificient tools for the problems of 
comparison and consensus of classifications Here, an overview of results 
obtained by the ordinal approach is presented Latticial or semilatticial struc- 
tures of the main sets of classification models are described Many results on 
partitions are adaptable to dendrograms; many results on n-trees hold in any 
median semilattice and thus have counterparts on ordered trees and Bune- 
man (phylogenetic) trees For the comparison of classifications, the semimo- 
dularity of the ordinal structures involved yields computable least-move 
metrics based on weighted or unweighted elementary transformations In the 
unweighted ease, these metrics have simple characteristic properties For the 
consensus of classifications, the constructive, axiomatic, and optimization 
approaches are considered Natural consensus rules (majoritary, oli- 
garchic, ) have adequate ordinal formalizations A unified presentation of 
Arrow-like characterization results is given In the cases of  n-trees, ordered 
trees and Buneman trees, the majority rule is a significant example where the 
three approaches converge 

R~sum~: La th~orie des ensembles ordonn6s fournit des outils utiles pour 
les probt~mes de comparaison et de consensus de classifications Nous 
pr~sentons une revue des r6sultats obtenus grace ~ I'approche ordinale Les 
principaux ensembles de moddles de classifications poss6dent des structures 
de treillis ou de demi-treillis, qui sont d6crites Le fait que bien des r6sultats 
sur les partitions s'adaptent aux hi6rarchies indic6es provient de la proximit6 
de leurs structures latticietles; de m~me, des rb.sultats sur les hi6rarchies, por- 
tant en fait sur les demi-treillis h m6dianes, ont des 6quivalents pour les 
hi6rarchies stratifi6es et les arbres phylog~n&iques de Buneman Pour la 
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comparaison des classifications, la semi-modularit6 des structures ordinales 
prises en compte permet de d6finir des m&riques de plus courts chemins, 
bas~es sur des ensembles de transformations 616mentaires, et effectivement 
calculables Lorsque ces transformations ne sont pas pond6r~es, ces 
m6triques se earaet~risent simplement Pour le consensus de classifications, 
on consid~re les approches constructive, axiomatique et par optimisation d'un 
erit6re On a de bonnes formalisations ordinales de r~gles naturelles (majori- 
taire, oligarchique, ), fi partir desquelles on obtient une presentation unifi6e 
de divers r~sultats de type arrowien Dans le cas des hi6rarchies, des 
hi6rarchies stratifi6es et des arbres de Buneman, un fair important, r~:sultant 
de leurs structures de demi-treillis ~i m6dianes, est que la r6gle majoritaire 
peut ~tre obtenue par chacune des trois approches 

Keywords: Hierarchical classification. Median; Metric; Numerical taxonomy; 
Partial order; Partition; Phylogeny; Ultrametric 

1. Introduction 

The  aim of  this paper is to give an overview of  results obtained by the 
ordinal approach in problems of  comparison and consensus of  classifications 
This ordinal approach relies on one  fact and one  claim. The  obvious fact is 
that all the sets of  usual taxonomic models  (partitions, n-trees,  ordered 
trees, ultrametrics, ..) are naturally ordered For  instance, a partition can be 
finer than another  one, an n-tree included in another  n-tree,  the values o f  
an ultrametric always less than the values of  another,  and so on. The  claim 
is that knowledge of  the abstract s t ructure of  these orders allows one  to 
solve some problems raised by the definition of  suitable methods  of  com- 
parison and consensus.  This claim is now supported by the works of  authors  
such as Day, Janowitz, Margush, McMorris ,  Neumann,  Norton,  Schader, 
and ourselves, and we are hopeful  this paper will convince the readers 
perhaps yet reluctant Notice also this claim does not  say the ordinal 
approach may solve all --  or even  most  --  problems of  comparisons or con- 
sensus of  classifications, such an assertion would be insane We shall begin 
by presenting two general illustrations o f  our  claim, then we shall give more  
details and other  examples while presenting the contents of  this paper. 

A taxonomic model,  such as a partition or an n-tree,  is a discrete 
mathematical object without natural vectorial descriptions. Then  in order  to 
compare  two such objects we cannot  use the classical measures of  distance 
in a vector  or Euclidean space, unless we use more  or less arbitrary codings 
But for such objects it is often possible to define elementary transformations 
of  one object into another ,  and to define the distance between two objects as 
the min imum number  of  such transformations needed to obtain the first 
f rom the second. As a mat ter  of  fact, many such least-move or minimal 
path length distances have been defined in various fields; for  early examples 
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in the social sciences see Flament (1963) and Boorman and Arabic (1972) 
Unfortunately this kind of distance may have a serious drawback" it may be 
very hard to compute effectively (this point has been especially emphasized 
by Day) On the other hand, when the set of  all objects considered is 
endowed with a partial order, there are natural elementary transformations, 
i .e ,  transformations linked with the ordinal structure, and thus natural 
minimal path length (MPL) metrics For instance, such an elementary 
transformation is a transformation of  x into y when x and y are comparable 
but do not admit intermediary elements in the partial order For example, 
in the case of the ordered set of all partitions, such a transformation is the 
union of  two clusters into a unique one or the converse operation A 
significant class of partially ordered sets, the semimodular posets, have ordi- 
nal formulae allowing one to compute easily the associated MPL metric, 
moreover one can characterize axiomatically such a metric For instance, 
since the ordered set of all partitions is semimodular one can apply the 
above results to it. 

Let us turn to consensus problems A classical way to define a con- 
sensus between n given objects is to define a remoteness index between 
them and any consensus candidate and to take as consensus objects those 
minimizing this remoteness A usual way to define remoteness is to use a 
function of the distances between the given objects and the consensus candi- 
date So the minimal path length metrics described above can be used to 
define consensus methods But even if the minimal path length metric is 
easy to compute, the associated (given a remoteness function) consensus 
method may be problematic since a consensus object may be very hard to 
compute Such behavior is often the case with the median consensus, 
defined by taking as a remoteness function the sum of distances, even 
though this median procedure is often the most relevant (Barth61emy and 
Monjardet 1981) However, for the class of median semilattices (a 
significant subset of the modular partially ordered sets), the median con- 
sensus becomes easy to compute and moreover this median procedure can 
be axiomatically characterized. For instance, since the set of all n-trees is a 
median semilattice (for the inclusion order between n-trees), one can apply 
the above results to it 

This last example also makes clear an advantage of the ordinal approach 
that is shared by any abstract or axiomatic approach The abstract theory of 
the median procedure in median semilattices, or equivalently in median 
graphs, is not quite simple; for instance it requires an unobvious embedding 
theorem due to Sholander (1954, see Bandelt and Barth61emy 1984). On 
the other hand it is easy to show that the set of all n-trees is a median semi- 
lattice, and so to obtain many results on the median consensus of n-trees. 

We now give a description of the contents of this paper, where we 
make clear the main ordinal structures encountered and the kind of results 
they allow one to obtain A first remark has already been made all the sets 
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S of taxonomic models considered here are partially ordered. So the 
minimal abstract structure is nothing else than that 

OSo (S, ~<)is a partially ordered set. 

Recall that the relation ~< is then reflexive, antisymmetric and transitive, 
and that the expression partially ordered set is often abbreviated as poset In 
Section 2 we systematically investigate the ordinal structure of the five sets 
of the most usual taxonomic models partitions, ultrametrics (or dendro- 
grams), n-trees, ordered trees, and Buneman (or phylogenetic) trees. In 
each of these posets there exists a meet or (and) join for any two such 
models so that 

OS1 (S, <~) is a semilattice. 

However OS~ is not sufficient to describe the common structure of our sets 
of classifications All these semilattices are semimodular (the precise 
definition is in Section 3 2 1) from an abstract point of  view the significant 
ordinal structure is that 

OS 2 (S, ~< ) is a semimodular semilattice 

Moreover three of these ordered sets of classifications, i e., the sets of  n- 
trees, ordered trees, and Buneman trees, have common additional properties 
making them very close to distributive lattices the shared ordinal structure 
of interest is that 

OS 3 (S, ~< ) is a median semilattice. 

In Section 2 we do not assume the reader has a basic knowledge of partial 
orders, so we define through the examples such basic notions as meet, join, 
covering relation, and irreducible element. Abstract definitions can be 
found either in the reference books cited or in the other sections 

In Section 3 we present results of the ordinal approach for the problem 
of comparing classifications. First the results already mentioned above are 
precisely stated For semimodular semilattices (the 0S2 case), we give for- 
mulae allowing one to compute the MPL metrics and we present axiomatic 
characterizations of such metrics. Then we consider more general cases 
where one copes with minimal weighted path length (MWPL) metrics 
defined on the ordered set S Here again one uses elementary ordinal 
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transformations, but now they have an associated weight or cost say there 
exists a monotone real-valued function v on (S,~<) and the weight of the 
elementary transformation from x into y is I v (y)  - v ( x )  [ Here also the 
effective computation of  this distance may be difficult unless the function v 
satisfies additional properties and thus constitutes a so-called semivaluation 
So we obtain our last abstract structure in which 

0 S 4 ( S ,  ~.~ , I~) iS a partially ordered set with a semivaluation v 

In this case one obtains also a formula to compute the MWPL metric 
moreover if S is a semimodular semilattice one has a good local criterion to 
recognize a semivaluation We end Section 3 by describing the metric 
approach to consensus problems already mentioned above. 

In Section 4 we present results of the ordinal approach to the problem 
of finding a consensus of classifications First we recall the three main 
approaches to achieve consensus the axiomatic approach going back to 
Arrow's theorem; the constructive approach going back at least to Borda 
(1784) and Condorcet (1785) with their sum of ranks and majoritary rules 
(see Guilbaud 1952), and the optimization approach in which a remoteness 
function is minimized. We begin by considering the constructive approach 
In Section 4 2 we define consensus rules generalizing the classical majoritary 
or oligarchic rules by taking lattice polynomial functions Such rules can be 
defined in any semilattice (the 0S2 case) In Section 4 3 we look at the 
effective computation of these rules The two following sections are 
devoted to the axiomatic approach First we give an ordinal presentation of 
Arrow-like axioms, valid in the 0S2 case Next we present Arrow-like 
results for the consensus of partitions or ultrametrics Finally we show that 
for median semilattices (the 0S3 case), one can obtain axiomatic characteri- 
zations of the lattice polynomial consensus functions Moreover in Section 
4 6 we show that in this case, the three approaches to consensus can coin- 
cide the median procedure defined by an optimization criterion can be com- 
puted by a lattice polynomial rule and can be axiomatically characterized 
These results can especially be applied to n-trees, ordered trees and Bune- 
man trees 

2. Ordinal Structures of Sets of Taxonomic Models 

2.1 Natural Orders on Classes of Taxonomic Models 

In this section we shall present the latticial or semilatticial structures of 
sets of  the usual taxonomic models We are not here interested by the ordi- 
nal structure that a specific taxonomic model, for instance an n-tree, may 
have, but rather by the ordinal structure of the set of all n-trees, or of sub- 
sets of  this set. The taxonomic models we shall consider belong to five 
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classical types (defined below) partitions, dendrograms (valued trees) or 
ultrametrics, n-trees, ordered trees, and Buneman trees The latticial struc- 
ture of the set P ,  of all partitions on an n-set is well known, indeed this lat- 
tice is a famous example of what is now called a geometric (or matroid) lat- 
tice. Moreover, several problems about P ,  have led to significant advances 
in discrete mathematics (general references on P ,  may be found in Birkhoff 
1967, Barbut and Monjardet 1970, Aigner 1979, and Pudlak and Tuma 
1980). Recall also that a partition P is finer than a partition P', such order 
on P,, being denoted by P~< P', if and only if every cluster of P '  is a union 
of clusters of P. 

We begin in Section 2.2 with the study of the lattice U,  of all 
ultrametrics on an n-set. This lattice is closely related to P,, and so may be 
called a quasi-geometric lattice. Then in Section 2 3 we study the semilattice 
T,  of all n-trees, a semilattice belonging to the important class of median 
semilattices (a generalization of distributive lattices). Finally in Section 2.4 
we show that several other sets of taxonomic models are also median semi- 
lattices or distributive lattices, a fact that will be very Useful for the prob- 
lems of consensus tackled in Section 4. 

2.2 The Lattice of all L-ultrametries 

In this paper X is always a finite set with n elements (an n-set) and L 
is always the set {0< 1 < . . . <  1} of the first f positive integers, with zero 
The notions and results below would be exactly the same for 
L - - { 0 < ~ <  <~i},  ~,; a real number,  and they could be adapted for 
L - - / R  +. 

Definition 2.1 An L-ultrametric on the set X is a map U from the set X 2 of 
all ordered pairs of X to L which satisfies the following conditions 

for every x in X, U(x,x) ~ O, 
for every x,y in X, U(x,y) -- U(y,x), 
for all x,y,z in X, U(x,y)<~ max [U(x,z), U(z,y)] 

We denote by UL,. the set of all L-ultrametrics on the n-set X. It is well 
known (Benz~cri 1967, Johnson 1967) that there is a natural bijection 
between UL, . and the set, denoted by DL.. of all L-dendrograms. 

Definition 2.2 An L-dendrogram is a map D with domain L and codomain 
P .  which satisfies the following conditions 

D(I)-~ {X}; 
k ~<h' implies D(h)<~D(X'). 

This definition is valid with L finite, in the infinite case (L - /R +) one 
has to add a continuity condition (see Jardine and Sibson 1971) If an 
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ultrametric U satisfies the condition that U(x,y) = 0 implies x ---- y, then in 
the associated dendrogram D(0) is the finest partition in which every cluster 
is a single element of X. If not, D (0) may be any partition of X. 

The set Ut..,, of all L-ultrametrics is naturally pointwise ordered 

U~< U' if and only if for all x,y in X, U(x.y)<~ U'(x,y) 

UL,. endowed with this partial order is a lattice First, if U and U' are two 
L-ultrametrics, an L-ultrametric is obviously defined by taking 
max[U(x,y),U'(x,y)] for every pair (x,y). This ultrametric is the least 
upper bound, or join, of U and U' and is denoted by U V U' Second, it 
is easy to see that the set of lower bounds of the ultrametrics U and U' has 
always a greatest element,  or meet, denoted by U A U' Indeed, U A U' 
is the classical subdominant ultrametric (Jardine and Sibson 1971) associated 
with the dissimilarity h ( x , y ) =  min[U(x,y),U'(x,y)] This lattice UL,. 
has been studied by Leclerc (1979, 1981, see also Barth61emy, Leclerc and 
Monjardet 1984a). It is worth noticing, since the set DL.. of all L- 
dendrograms is one-to-one with the set UL.,, of all L-ultrametrics, that DL.. 
may be also endowed with a latticial structure Indeed, the natural order for 
dendrograms is also the pointwise order" 

D ~<D' if and only if for every X in L, D(h) <~ D'(h), 

and it is easy to see that Dt.,. endowed with this partial order is a dual 
(anti-isomorphic) lattice of the lattice UL.,,. More precisely, the meet  and 
join operations in DL.,, are defined for every h in L by 
O A D'(h)= O(h) A O'(h) and O V D' (h)=O(h)  V O'(h) This 
lattice has been considered by Boorman and Olivier (1973) in the case 
where L = /R + 

From a more abstract point of view, one can notice (Barth61emy et aL, 
1984a), following Janowitz (1978), that an L-dendrogram is a special case of 
a residuated map between two partially (or linearly) ordered sets, then UL,,, 
is the dual of the lattice of all residuated maps between L and Pn, a fact 
allowing one to use powerful tools of the theory of partially ordered sets 
(Blyth and Janowitz 1972, Leclerc 1984, Barth61emy et aL, 1984a). More- 
over this fact accounts for several properties of UL.n Here we shall only 
give three properties (Leclerc 1981) corresponding to well-known properties 
of the lattice of partitions P . .  Indeed, if L = {0 < 1}, UL,. is the dual lat- 
.tice of P . ,  and for [LI>~ 3 we obtain dual generalizations of properties of 
P. 

First, we need the definition of the covering relation associated with the 
partial order in UL,,, (such a notion may be defined in any finite partial 
order)" the ultrametric U is covered by the ultrametric U' if and only if 
U < U' and U < U" ~< U' implies U"-- U' If U is covered by U' we write 
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U ~ U'; in other words, U -< U' if there exists no ultrametric between U 
and U'. 

In order to characterize this covering relation one uses the well-known 
notion of the min imum spanning tree (MST) of an arbitrary dissimilarity 
(Gower and Ross 1969, Hartigan 1975, Chap. II). Then U -< U' if and 
only if U and U' have a common MST such that U'(x,y) = U(x,y) + 1 for 
the two ordered pairs associated with a unique edge {x,y} of this MST, and 
U'(z,t) == U(z,t) for all the ordered pairs associated with the other edges of 
the MST So in this case there is a subset of X 2 on which U' takes the 
value U + 1, whereas on the other ordered pairs U' equals U 

Proposition 2.1 The lattice Ut.,, of all L-ultrametrics on X is lower semimodu- 
lar, i.e., for every U and U' in U L.,, U -( U V U' and U' -< U V U' 
implies U A U' ~( U and U !~ U' -( U'. 

In order to make more intuitive this property of semimodularity, we 
give the following definitions (valid for any partially ordered set) An upper 
triangle in UL,, is a 3-tuple (U1,/./2, U3) with /-/i -< U3 I./2 -< I-/3 and 
UI ;a U2. A quadrilateral in UL., is a 4-tuple (Uo, UbU2,U3) with 
Uo -< Ut, Uo -< U2, UI K 1./3, U2 -< 1-/3 and Ul ;~  I-/2. Then to 
say UL., is lower semimodular is equivalent to saying that in UL., each 
upper triangle (UI, [/2, [/3) completes into a quadrilateral (U0, U1, I-/2,1-/3). 
Notice the lattice Pn of all partitions of X is upper semimodular, i .e ,  in P,, 
each lower triangle (Pl "< P2, PI "< P3) completes into a quadrilateral 
(el -< e2, e l - <  e3, e2 -< P4, P3 -< P4) 

It is well known that a lower or upper semimodular poset S is ranked, 
i.e., one may assign to each element s of S an integer r(s) such that 
s -< t (s is covered by t) implies r(t) -= r(s) + 1. Such a function r is 
called a rank function. If the ranked poser has a least element 4), the rank 
function assigning the value zero to this least element is called the height 
function, then h (s) is just the number of nonzero elements in any covering 
sequence 4) -( sl -< . . . . <  sl,-- s from 4) to s. Our second result 
gives the height function in UL.,,. 

Proposition 2.2 The height h ( U) of an L -ultrametric U is 
h (U) = ~., U(x,y), where the sum is taken over all the pairs of a minimum 
spanning tree of U. 

We end this section by results on the decomposition of an ultrametric 
into simple ultrametrics. We use two kinds of simple ultrametrics An L- 
ultrametric U is said to be elementary if and only if there exists >, > 0 in L 
and a bipartition {Y,Z} of X(Y U Z - -  X, Y N Z ~- o )  such that for all 
(x,y) in y z u  Z 2, U(x,y)=O,  for every x in Y and y and Z, 
U(x ,y ) - -h .  Such ultrametrics have been defined by Hubert (1977) An 
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ultrametric U is said to be coelementary if and only if there exists h < / in L 
and a pair (Xo,Yo) of X 2 such that U(xo,Yo) -- X, and for all the other pairs 
(x ,y ) ,  x ~ y,  U(x , y )  -- I 

Proposition 2.3 Every L-ultrametric is a join of  at most n - 1 elementary L- 
ultrametrics and a meet o f  at most n - 1 coelementary L-ultrametrics. 

The fact that every ultrametric is a join of elementary ultrametrics or a 
meet of coelementary ultrametrics is a simple consequence of the latticial 
structure of UL.,, Indeed, in any finite lattice, every element is a join of 
join-irreducible elements, and a meet of  meet-irreducible elements, where a 
join-irreducible (resp meet-irreducible) element is an element covering (resp 
covered by) a unique element One may show that the elementary (resp. 
coelementary) ultrametrics are exactly the join-irreducible (resp. meet- 
irreducible) uttrametrics of the lattice UL,.. The fact that the decomposi- 
tions in Proposition 2 3 use at most n - 1 simple ultrametrics follows from 
the fact that an ultrametric is determined by any one of its minimum span- 
ning trees 

For proofs of the above propositions and more results on the lattice 
UL,. see Leclerc (1979, 1981) 

2.3 The Semilattice of all n-trees 

Definition 2.3 An n-tree (or a bare tree) T on X is a family of subsets, 
called clusters, which satisfies the following conditions 

X E  T, z f [  T ,  

for every x in X, {x} E T ,  

foralI  C, C' in T ,C  N C' E {C,C',~} . 

The set T.  of all n-trees has on it a natural partial order 

T C T ' i f a n d  only if C E Timplies C E T' 

The intersection of two n-trees, i .e,  the set of their common clusters, is 
obviously an n-tree; so T O T' is the meet T A T' of the n-trees T and 
T' Thus the set T,, of all n-trees on X is a meet semilattice The semilat- 
tice T4 is represented in Figure 1 The least element of T.  is the bush 
T6 -- {X} U {{x} x E X}, the clusters of the bush will be called the trivial 
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clusters. It is easy to find two n-trees T and T' having no common upper 
bound (take C in T and C' in T' with C N C' ~ {C,C',O}) So T.  is not a 
lattice, indeed T.  has 1-3-5 • • ( 2n -3 )  maximal n-trees (Harding 1971), 
which are exactly the n-trees with 2 n -  1 clusters (often called binary 
trees) Notice also that the join T V T' of  two n-trees exists only if 
T O T', the set of clusters belonging to T or T', is an n-tree The meet 
semilattice T .  of all n-trees on X has been studied by Leclerc (1985a). 
Using the remark just above one obtains the following property of T n. 

Proposition 2.4 For all Tb 1"2,1"3 E T. i f  T 1 y T 2, 1"2 ~/ T3 and T3 V Tt 
exist, then T 1 V 1"2 "~ 1"3 exists. 

Since it is obvious that one obtains an n-tree by deleting any set of 
nontrivial clusters from an n-tree, one gets the following result. 

Proposition 2.5 For every T in T ,  the set o f  all T' ~ T is a boolean lattice. 

Now, the above two properties imply that T .  is a median semilattice, a 
fact having significant consequences. 

Definition 2.4 A meet semilattice S is a median semilattice if and only if it 
satisfies the following conditions 

for all s , t ,u  in S, if s V t, t V u and u V s exist, then 
s ~/' t V uexists,  
for every s in S, { t E S • t ~< s} is a distributive lattice. 

By the second condition, a median semilattice with a greatest element is 
a distributive lattice Using this same condition, one can prove (Sholander 
1954) that a median semilattice has a good canonical embedding into a dis- 
tributive lattice it is obtained from this lattice by a "good beheading," i.e., 
a deletion of elements at the top of the lattice, preserving the above first 
condition. An obvious consequence is that a median semilattice is lower 
semimodular So, in the case of the median semilattice T,,, we have: 
T -( Tt3  T' and T' -< T O  T' imply T N  T' ..< T and 
T N T' -,( T' Here, -< is the covering relation in Tn" T -< T ' i f a n d  
only if T' has all the clusters of T and just one cluster more. Notice also 
that the height function h (T) of T ,  is nothing more than the number of 
nontrivial clusters in the n-tree T. 

Another significant property of median semilattice is the existence of 
generalized majoritary polynomials Here we state the property in the spe- 
cial case of n-trees, a more abstract point of view being developed in Section 
4.2 Let T1..  , T~ . . . . .  Tv be n-trees; we set up V - {1 . . . . .  i . . . . .  v} 
and we define a generalized majoritary family as a nonempty family W of sub- 
sets of V satisfying the following conditions" if W E W and W __. W', then 
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W' E W; if IV, W' E W, then W N W' ;e O Then we have the following 
result 

Proposition 2.6 For every generalized majoritary family W of  V, the n-tree 
T(W)-~ U w~w (N i~ w Ti) exists. 

Notice the definition of T(W) is equivalent to saying that a cluster C 
belongs to T(W) if and only if there exists W in W such that C belongs to 
all the T,.'s, i E IV. One obtains the usual majoritary rule by taking 
w {IV v I IVI >i (v + 1)/2}. In this case, we say T(W) is an alge- 
braic median of the Tj's (i E V) The significant fact about this algebraic 
median is that it can be also defined as an n-tree whose distance from the 
given T~'s is a minimum (see Sections 3 4 and 4.6). This unobvious fact 
results from the general theory of medians in median semilattices, such a 
theory having essentially been initiated by Barbut (1961) (see also Barbut 
and Monjardet 1970, Monjardet 1980) in the case of distributive lattices, 
then extended to the general case by Bandelt and Barth61emy (1984) 
Notice also we have here defined median semilattices as meet semilattices, 
but corresponding results are obtained with join semilattices (by duality) 

2.4 Median SemUattices of Other Sets of Taxonomic Models 

2 4.1 Ordered Trees. Recall that a binary relation is called a weak order (or 
a complete preorder) if it is transitive and complete, so the symmetric part 
of a weak order is an equivalence relation, and the set of its equivalence 
classes is linearly ordered In the definition just below, we denote by ~< 
such a weak order and by < its asymmetric part. 

Definition 2.5 An ordered tree on X is an ordered pair O = (T, ~<) where 
T is an n-tree and ~< is a weak order on T satisfying the following condi- 
tions 

for all clusters C, C' in T, C c C' implies C < C'; 
all the 1-clusters of T ( i e ,  the singletons {{x} 
equivalent according to this weak order 

x E X }) are 

The clusters of an ordered tree are ranked according to the levels of the 
weak order, from the zero level (formed by all the 1-clusters) to the top 
level (formed by the cluster X) More generally the maximal clusters less 
than or equal to a given level of the weak order form a partition of X Thus 
we can associate with an ordered tree O a chain 
{{x} ' x  E X} --- Po < e l < . . < P i < . . < P k  = {X} of partitions of X Con- 
versely it is easy to see that such a chain defines an ordered tree (the dus- 
ters of T are given by the clusters of  the P;'s and the weak order between 
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two clusters, by the order between the indices of the first partition where 
they appear) Thus this correspondence between the sets of ordered trees 
and chains of partitions is one-to-one Now there is a natural partial order 
on the set of all chains of partitions" a chain is contained in another chain if 
and only if each partition of the first chain belongs to the second chain. We 
define the order relation on O, the set of all ordered trees on X as the order 
induced by this inclusion order between partition chains (T,x<) ~< (T',~<') 
if and only if each partition of the chain associated with T belongs to the 
chain associated with T' 

So (O,,,~<) is order isomorphic to the set of all partition chains 
endowed with the inclusion order Now we can use the easily proved result 
that for a partially ordered set with least and greatest elements, the set 
ordered by inclusion of all its chains (i e ,  its linearly ordered subsets) con- 
taining these two elements is a median semilattice (see Barth61emy et al, 
1984a, 1984b, for a more general result due to Bandelt). So finally we 
obtain the following result 

Proposition 2.7 The set O.  of  all ordered trees on a set X is a median semilat- 
tice. 

Especially the majoritary properties stated in Section 2 3 may be 
translated for O,, 

The order between two ordered trees has been defined above by using 
the order between the associated partitions. One can also give the following 
direct characterization of this order ( T , ~ )  ~< (T',x<') if and only if the 
three following conditions are satisfied 

T_c T', 
for all C,C'  E T, C< C' implies C<'C' ;  
for all C E T and C' E T', C ' ~ ' C  implies that there is a C" ~ T such 
that C' ~ C" ~ C 

2 4.2 Buneman Trees 

Let a tree be a connected, acyclic, undirected graph (see any book on 
graph theory, e.g., Harary 1969) A Buneman (or phylogenetic) tree on X is 
an ordered pair B = (T,~) where T = (V,E) is a tree with vertex set V and 
edge set E, and where ~ is a map from X to V such that each element in 
V - ~ (X) is linked with at least three other vertices 

We denote by B n the set of all Buneman trees on X Buneman trees 
appear in the recovery of bifurcation processes (phylogenetic trees) and in 
the problem of fitting an additive tree metric to a dissimilarity measure (see 
Barth61emy and Luong, 1986, for a review and Gu6noche, 1986, for an 
analysis of  recent algorithms). The equality between two Buneman trees is 
defined by convention as (T,~) --- (T',~b') if and only if there exists a tree 
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isomorphism f from T = (V,E) to T '=  (V',E') such that for each x in X, 
ft~ (x) -- qJ'(fx), so we consider that only the vertices in $ (X) are labeled 
in the Buneman tree (T,$). 

Consider the set P,.2 of all bipartitions of X We know from Buneman 
(1971) that Buneman trees are one-to-one with the subsets H of P,.2 such 
that: if ,7- = {E,E'} and I" ---- {F,F'} are in H, then one of the intersections 
in {E O F , E  n F' ,E'  N F ,E '  N F'} is empty. In this case we say that o- 
and ~" are noncrossing (compatible according to Buneman's terminology) In 
this bijection we associate with B = (T,$) in B, the set S(B) of bipartitions 
of X induced by deletions of single edges of T, i.e., the so-called set of 
splits of B. So, if we consider the graph G (X) whose vertices are all the 
bipartitions of X, two vertices o- and z being linked by an edge if and only if 
o- and z are noncrossing, the Buneman trees are one-to-one with the com- 
plete subgraphs of G (X) 

Now it is easy to establish that all the complete subgraphs of a graph 
constitute a median semilattice. So the set B, may be ordered as a median 
semilattice. It is also easy to ascertain that the corresponding order ~< may 
be interpreted as resulting from contraction of edges. (T,$) ~< (T,$') if 
and only if T is obtained by contracting one or several edges in T' (Figure 
2 illustrates the contraction of edges.) So we obtain this result 

Proposition 2.8 (B. ~<) is a median semilattice. 

Consequently, the results of Section 2.3, and more generally of Sec- 
tions 4.5 and 4.6, apply to B.. More details about Buneman trees and the 
structure of (B.,~<) may be found in Barth61emy (1985) 

2.5 The Landscape of Ordered Sets of Taxonomic Models 

This result ends our study of the ordinal structure of sets of taxonomic 
models. We have seen that these partially ordered sets belong to two kinds 
of ordinal structures, geometric or geometric-like lattices (for partitions and 
ultrametrics), and median semilattices (for n-trees, ordered trees, and Bune- 
man trees). Given the significance, for comparison and consensus prob- 
lems, of the median-semilatticial or distributive-latticial structure, it is worth 
pointing out that subsets of P,  or U, can have this structure. We give one 
nontrivial example. Let U(M) be the set of all L-ultrametrics on X having 
a given tree M as minimum spanning tree; then U(M) partially ordered by 
the pointwise order is a distributive lattice isomorphic to the pointwise 
ordered set L ~t of all maps M ---, L. 
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Figure 2 A Buneman tree B = (T,~) and the Buneman trees obtained by the contraction of 
one edge of T Notice that ~ is not necessarily bijective: a vertex may admit multiple labels 

3. Ordinal Results on the Comparison Problem: Metric Aspects 

3.1 Least Moves for Taxonomic Models 

Classifications on the same set X of objects can be compared using the 
classical least-move approach (Flament 1963, Robinson 1971, Arabic and 
Boorman 1973) First, admissible elementary transformations between 
classifications are defined. The least-move metric between two 
classifications D and D' is defined as the minimum sum of costs of a 
sequence of transformations connecting D and D'. That is, we construct a 
graph whose vertices are classifications of a given type (partitions, dendro- 
grams, ordered trees, n-trees, Buneman trees,.  ) and whose edges are 
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admissible elementary transformations. Second, we compute a shortest path 
between two vertices in such a graph, where the length of each edge is the 
cost of the corresponding elementary transformation. The possibility of 
inherent intractability of such a computation has been studied by Day and 
Wells (1984) (of also Day 1981, 1983a, 1983b, for other complexity 
results). Here, we just mention that the efficient, classical algorithm of 
Dijkstra (1959) computes the minimal path. length in O(m 2) time, with m 
as the number of vertices of the graph. Table 1 gives the values of m as a 
function of Ixt = n for our taxonomic models. It illustrates that the com- 
plexity of such an algorithm increases exponentially with n. In it, the p(n) 
are the classical Bell numbers. The t(n) are the numbers occurring in 
Schr~der's fourth problem, and they can be computed from the 2-associated 
Stirling numbers of the second kind Recall that the number S2(n,k) 
enumerates the partitions of an n-set into k classes of cardinality at least 
equal to 2 

n--2 
t (n )=  ~'~ S 2 (n + k ,k  + l) , 

k=O 

(Comtet 1970, 1974; see Leclerc 1985a). The o(n,i) are the numbers of 
ordered trees with i levels on an n-set and the S(n, i)  are the well-known 
Stirling numbers of the second kind enumerating the number of partitions 
of an n-set into k classes. In the formulae for t(n) and b(n), 
p = log 2 -1 /2 .  Notice also that p(n) <<. t(n) <<. o(n), p(n) <<. u(l,n), 
and t(n) < b(n + 1). 

In fact, from Day and Wells (1984), we know that the computations of 
some distances between classifications are NP-complete (Garey and Johnson 
1979). However, consider for example the case of the lattieial metric on 
P, ,  i.e., the minimal path length distance on the covering graph of P~ This 
metric can be computed with the help of the formula 

d(P,Q) = 2r(P Q) - r ( P )  - r(Q) , 

with r as some rank function of the lattice (P,,~<). The time to compute 
the join of two partitions is bounded by a polynomial in n. If, as is often 
the case (for instance for the height), the rank function is also polynomially 
computable, then the formula ensures that the metric d can be computed in 
a polynomial time. 
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Set 

P~ 

Number 

p(n) 

UL. u(t,n) 

[O. o(n) 

IT. t(n) 

B~ b(n) 

Table 1 

Formula Source 

p(n) - e ~s-o h'-~ Dobinsky (1877) 

u(f,n) - ~ o(n,i) Barthelemy, Leeler¢, 

Monjardet (1984a) 

o(n) - ~ S(n j )  o(i) - ~ o(n-i) Schader (1980) 
~-I i - I  

Robinson (1980) 

In this section, we shall use the structures of posets of taxonomic 
models to obtain metrics between classifications. Section 3.2 deals with the 
case of semimodular posers with nonweighted edges. In Section 3.3 we con- 
sider weights on the edges that are compatible with the order Section 3.4 
introduces the consensus problem from a metric point of  view 

3.2 Semimodularity and Metrics for Comparing Classifications: Rank 
Functions 

3.2.1 Semimodutarity 

We introduced semimodularity in Section 2.2 and we established that 
the order structures of all the sets studied in Section 2 (Pn, UL,,, DL,,,  T, ,  
O, ,  B, )  are semimodular Now we present a somewhat more abstract point 
of view Consider a poset (S,~<), i e a set S with a transitive, reflexive, 
and antisymmetric relation ~<. We say that s E S covers t E S if s < t and 
s < u ~< t implies u - t. In this case we write s -( t This covering rela- 
tion has been studied in Section 2 2 for ultrametrics, in Section 2 3 for n- 
trees, and in Section 2 4.2 for Buneman trees. In the example of the parti- 
tion lattice P , ,  we easily see that P -< Q if and only if one cluster of Q is 
the union of two clusters of P ,  whereas the other clusters are the same in P 
and in Q. 

Semimodularity defines links between triangles and quadrilaterals. As 
in Section 2 2, we define a lower triangle in (S,~<) as a 3-tuple ( t ,u ,v )  such 
that u ;~ v, t -< u and t .( v Dually, an upper triangle is a 3-tuple 
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(u ,v ,w)  with u ;~ v, u --< w and v ..( w A quadrilateral in (S,~<) is a 
4-tuple ( t , u , v ,w)  such that u ; a  v, t .< u, t -< v, u -~ w and 
V W. 

Definition 3.1 A poset (S,~<) is lower semimodular whenever each upper 
triangle (u ,v ,w)  completes into a quadrilateral ( t , u , v ,w) .  Dually (S,<~) is 
upper semimodular when each lower triangle ( t ,u ,  v) completes into a quadri- 
lateral ( t ,u ,v ,w) .  

In the special case of a lattice or of a semilattice, we recapture the 
definitions of Section 2. As in Section 2, a rank function on the poset 
( S , ~ )  is an integer-valued map r defined on S such that r(u)  -= r(t)  + 1 if  
t ..< u. We already mentioned in Section 2.2 that a semimodular poset 
with a least element (or with a greatest element) is ranked. When S is 
ranked and has a least element ¢b, we call, following the terminology intro- 
duced in Section 2.2, the rank function h with h (~b) = 0 the height function. 

The covering graph of (S,~<) has S as its vertex set and has {u,v} as 
an edge if and only if u -~ v or v -< u. We denote by d t h e  minimal 
path length (MPL) metric in this covering graph: d(s , t )  is the length of a 
minimal path between s and t. In the semilatticial case, we also call d the 
latticial metric of (S,~<). Theorem 3.1 generalizes a well-known result in 
lattice theory (cf. Gr~itzer, 1978, for instance). It indicates that in the semi- 
modular case the latticial metric is computable by an efficient algorithm 
when the bounds and rank function are computable by efficient algorithms. 
This situation is, in some sense, characteristic of  semimodularity. 

Theorem 3.1 Let (S, <~) be a meet semilattice with a rank function r. The fol- 
lowing assertions are equivalent: 

(i) (S,~<) is lower semimodular; 
(ii) r is such that for each u, v, w with u <~w and v <~w, 

r ( u ) + r ( v )  <~r(u A v ) + r ( w ) ;  
(iii) the latticial metric on ( S , ~ )  is given for each u,v in S by 

d(u ,v)  ~ r(u)  + r(v) - 2r(u A v). 

Theorem 3.1" Let (S,~<) be a join semilattice with a rank function r. The 
following assertions are equivalent: 

(i)* ( S , ~ )  is upper semimodular; 
(ii)* r is such that for each t ,u ,v  with t<~u and t<~ v, 

r (u)  + r(v)>~ r(u  V v) 4- r( t ) ;  
(iii) ~ the latticial metric on (S,<~) is given for each u,v  in S by 

d(u ,v )  = 2r(u  V v ) -  r(u)  - r(v) .  
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Table 2 

Poset semi 
modularity 

p ~  w ~ upper 

U ~  v ~ lower 

T~ ̂ ) 

upper 

lower 

O~ ^) lower 

I1~ •) lower 

height 

h (P) - n - number of clusters 
in P 

h(V)-  ~. V(x,y) 
x y E A  

A any minimal spanning tree 
of  U 

by duality 

h (T) = number of nontrivial 
elusmrs in T 

h ( O ) =  number of nontriviai 
partitions of O 

h ( B )  ffi number of edges 
in B 

latticial metric 

d ( P ,P ' )  - 2 h ( P  v P9  - 
h ( P ) -  ~(P')  

d ( U , U ' ) -  h ( U )  + h (U ' )  

- 2 h ( U A  U9  

by duality 

d ( T , T ' ) -  number of nontrivial 
clusters in T A T' 

d ( O , O ' )  = number of nontrivial 
partitions in 0 A 0 ' =  
O U  O'  - O n  O'  

d ( B , B ' )  -- number of 
bipartitions in 
S(B) A S(B') 

Assertion (iii) (resp (iii)*) implies that at least one minimal path 
between u and v passes through u A v (resp. u V v Theorems 3.1 and 
3.1" extend to arbitrary posets (Monjardet 1976). They hold for our sets of 
taxonomic models since they are all semimodular semilattices. Table 2 sum- 
marizes some results of Section 2 by giving for each poset of taxonomic 
models its operations, its kind of semimodularity, and formulae for its 
height function and for its latticial metric. 

3.2.2 Axiomatic Characterization of Latticial Metrics 

The use of semimodularity allows an axiomatic characterization of the 
MPL metric (Barth61emy 1979a) The problem concerns whether there 
exists a metric on a set of  taxonomic models satisfying a given set of  condi- 
tions; and if such a metric exists, is it unique? This kind of study goes back 
to Kemeny (1959) in the field of preference analysis. The Kemeny 
approach has stimulated some people working in taxonomy Mirkin and 
Chernyi (1970) in the case of  partitions, Margush (1982) and Leclere 
(1985b) in the case of n-trees. Here we give an abstract characterization of 
the latticial metric in a semimodular semilattice (Barth61emy 1979a). 
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Theorem 3.2 Let (S,~<) be a semimodular meet semilattice. The latticial 
metric d of (S, <~ ) is the unique real-valued function defined on S 2 and satisfying 
the following conditions. 

(1) For each s,s '  in S with s <~ s', d(s,s') = d(s' ,s) .  
(2) For each s, t, u in S with s<~ t<~ u, d(s ,u)  = d(s , t )  + d( t ,u) .  
(3) For each s,s '  in S, d(s,s') = d(s ,s  A s') + d(s',s A s'). 
(4) For each s,t,u,v in S such that s -(, t and u 

d(s , t )  = d(u ,v) .  
(5) The smallest strictly positive value of d is 1. 

• .4( V ,  

The following statements are worth noticing Symmetry is only par- 
tially required (condition (1)) Conditions (2) and (3) are weak forms of 
the so-called intermediarity condition in a distributive lattice" 
s A s' ~< t ~< s V s' implies d(s,s ')  = d(s , t )  + d(t,s ')  The values 
assigned to d are not a priori assumed to be positive (condition (5)). These 
rather weak conditions induce a strong result" in particular d will be full 
symmetric, positive, and will satisfy the triangle inequality. Of course, 
Theorem 3.2 dualizes to upper semimodular join semilattices provided only 
that condition (3) is changed to 
(3)* For each s,s' in S, d(s,s') = d(s ,s  V s') + d(s',s V s'). 

In Section 2, the expression of the meet and/or join has been indicated 
for each ordered set of taxonomic models, as well as the covering relation 
The pleasure of formulating Theorem 3.2 for Pn, UL.n, DL,n, T , ,  0,, and 
B, is left to the reader. 

3.3 Semimodularity and Metrics for Comparing Classifications: 
Weighted Edges 

3.3.1 Valuation Theory for Posets 

Theorems 3.1 and 3 2 hold whenever all admissible transformations 
between any two classifications have the same cost. In the general case we 
try to assign costs compatibly with the order. That is, we consider an iso- 
tone function v on the poser (S,~<), i e ,  s<<.s' implies v(s)  <~ v(s') ,  and 
we assign the weight Iv(s) - v(s01 to the edge {s,s'} of the covering graph 
of (S,~<). We shall denote by d~ the minimal weighted path length 
(MWPL) metric on this covering graph d~ (s,s') is the minimum length of 
any weighted path between s and s'. Our remarks in Section 3.1 on the pos- 
sible difficulty of the computation of dr are concerned with this general case 
However, for a class of isotone functions, the so-called valuations, the com- 
putation of dv will be as easy as the computations of the bounds and of the 
values of v. 
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Definition 3.2 A real-valued isotone function v on a meet semilattice 
(S,~<) is a lower valuation if for each u ,v ,w  in S with u<~w and v<~w. 

+ u(v) v(u A v) + 

Theorem 3.3 L e t  v be  a real-valued isotone function on a meet semilattice 
(S, ~<) The following assertions are equivalent: 

(i) v is a lower valuation; 
(ii) the MWPL metric do is given 

v (s) + v (s') - 2v (s A s') for each s,s '  in S. 
by do(s,s') = 

This theorem (Bordes 1976) extends to arbitrary posets (Barth~lemy 
1978) and dualizes An isotone function v on a join semilattice (S,~<) is an 
upper valuation if for each u, v, t with t~< u and t~< v 
v (u )  +v(v)>~v( t )  + v ( u  V v) The dual of Theorem 3 3 then asserts 
that v is an upper valuation on (S,~<) if and only if 
do(s,s') = 2v(s  V s ' ) - v ( s ) - v ( s ' )  for each s,s '  in S In addition, 
Theorems 3 1 and 3 3 assert that a meet semilattice is lower semimodular if 
and only if it is ranked by a lower valuation. 

3.3.2 The Use of Semimodularity 

So, in the case of an easily computable valuation, the corresponding 
MWPL metric is easily computable for our taxonomic models. However, to 
verify that a given isotone function is, or is not, a valuation, may not be 
easy In case of semimodularity, the quadrilateral condition (Barth61emy 
1978) provides a simple device to solve this task 

Theorem 3.4 Let v be an isotone function on a lower semimodular meet semi- 
lattice (S, <~ ). Then v is a lower valuation if  and only if  for each quadrilateral 
( t ,u ,v ,w)  o f (S ,  <~). v (u)  + v (v )  <~ v( t )  + v (w)  

Notice that this result dualizes and extends (but only partially) to arbi- 
trary posets (Barth~lemy 1978) Many such metric results on posets may be 
found in Monjardet (1981) 

3 3 3 The Determination of Distances Between Classifications 

Many distances between partitions derive from lower or upper valua- 
tions on the poser (P,,,<~). cf. Boorman and Arabic (1972), Arabic and 
Boorman (1973), Barth61emy (1979b), Day (1981). MWPL metrics have 
also been studied in the case of n-trees (Boorman and Olivier 1973, Hubert 
and Baker 1977, Margush 1982, Day 1985, Day and Faith 1985, Leclerc 
1985b) Here, we only indicate some general ways of obtaining such metrics 
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for T . ,  Ut.. . ,  and B..  First, consider a cluster index f ,  where f is an iso- 
tone real-valued function on 2 x, and for an n-tree T define 

v ( T )  = ~., at,  c ,  f ( C )  , 
CE T 

where the ar, c are positive real numbers (Leclerc 1985b). 

Proposition 3.5 v is a lower valuation on T .  OF and only i f  for each n-tree T 
and each pair C ,C '  o f  nontrivial clusters in 7/'." 
A ;a C implies ar, A - ar-lcI.A >i O; and 
A ;~ C andA  ~ C' implies ar, A + ar-lc,  c'l,A --ar-{cI,A --ar-{c'l,A >I O. 

Consider, as examples, the following cases. When f -- 1 and ar, c = 1, 
do is simply the latticial metric on T .  When f ( C )  = [C] and ar.c ~- 1, dv 
is given by d, , (T,T')  = ~ ICI. When f ( C ) - - - 1  and ar, c ~ 

CE TAT' 
1{ C'E T: C_C C'} I, d~ is the Margush metric (1982). 

The case of ultrametrics, or dendrograms, seems to have been less 
intensively studied. However, one can describe two general ways of obtain- 
ing upper (resp. lower) valuations on DL,n (resp. UL,.). Any upper valua- 
tion/x on P .  induces an upper valuation v on DL.n defined by 

o(D) = ~ tz(D(h)) 
xEL 

(Boorman and Olivier 1973). Let v 0 be a positive real-valued function 
defined on the (n - l)-fold Cartesian product L "-l, and assume that u0 is 
invariant under all permutations of the coordinates. We define a real-valued 
function v on Ut.,. by 

v ( U )  = v o ( U ( a O ,  U(a2) . . . . .  U (a ._ O )  , 

with the ai's as the pairs of some minimum spanning tree of U. 

Proposition 3.6 v is a lower valuation on UL,n if and only if  v o is a lower 
valuation on L n-~. 

On the other hand, a simple upper valuation on UL,. is the function v 
defined by v (U)  --- ~., U ( x , y ) .  

x,yE X 
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The comparison of Buneman (or phylogenetic) trees has been fre- 
quently considered, even in the context of n-trees or dendrograms, as a way 
of comparing the shapes of the trees; see the references in Robinson and 
Foulds (1981) The distance they proposed in this last paper, in particular, 
is simply the latticial metric on B.. We remark that, more generally, Propo- 
sition 3 5 can be reformulated for Buneman trees As before, let S(B) 
denote the set of all the splits o- of B, i.e., the set of bipartitions of X 
induced by deletions of single edges of B Consider a split index f,, i e ,  a 
positive function defined on the set of all bipartitions of X, and for a Bune- 
man tree B define 

v ( B ) - -  ~ aB,~f(o-) , 
,,- ~ S(B) 

where each aB.,~ is a positive real number 

Proposition 3.7 v is a lower valuation on lJ n i f  and only i f  for each B E B ,  
and each pair r , r '  o f  nontrivial splits orB" 
o" ~ r implies aB,~r - aB-H,,~ >~ O; and 
o" ~. r andcr ;~ ~' implies aB,, ~ + aB-{~,~,},,T -- aB-{~},,r -- as-{~'}.~ >10. 

The case where aB, ,~-- f (cr ) - -  1 corresponds to the latticial metric. 
More generally for a~.~,--1, we get d~(B,B ' )  = ~.. f ( o . ) .  

w E S(B)AS(B') 
Other cases are left to the imagination of the reader 

Now, we come back to the difficulty of computing a distance between 
classifications. Notice, for the lattices or the semilattices P,,, UL,. ,  DL.., 
T . ,  O. ,  B n, the bounds are computable polynomially in n (of Day 1981, 
1985, for fine studies of complexity emphasizing several linear cases). 
Thus, whenever a lower or upper valuation is polynomial in n too, we get a 
polynomial time (in n) algorithm to compute the related MWPL metric. 

3.4 The Metric Approach to Consensus 

The landscape of ordinal results in problems of consensus of 
classifications will be described in Section 4, where the main results will be 
given. Here we just indicate how the metric approach can be applied to this 
problem. 

Metrics between classifications may be used to obtain consensus in the 
same way that statistical measures of remoteness may be used to identify a 
central value in a series of numbers Generally, consider a metric space 
( S , d ) ,  a v-tuple ~"-- (sl, ,s ,)  E S v and an integer p Considering 
sl . . . . .  s, as a statistical series, the central value of order p will be obtained 
by the minimization of Dp (~-,s) where 
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IJ 

= Z, dP(s,s ) 

For p ffi 1 we get the so-called median of (s~ . . . . .  sv) By applying this 
paradigm to sets of taxonomic models, and by matching the solutions (or 
one solution) of the problem min Dp (rr,s) with the number 

$ 

I f f r )  ffi 1 - [ ( m i n  Dp(Tr,s)) / max Dp(~r,s)] , 

we get a so-called consensus index method (Day and McMorris 1985, see 
Rohlf 1982 for the notion of consensus index) Alternatives for l(~r) are, 
for instance, 

and 

l(1r) ffi 1 - [(min Dp(~r,s)) / max min Dp(~r,s)l 

I(~r) ffi 1 -  [(minDp(Tr,s))  / ( (1 / I s t )  Op(Tr,s))] 
~ES 

Such a consensus index method may be difficult to compute efficiently 
because it may require the solution of difficult optimization problems. A 
well-known example is the median procedure for some sets of binary rela- 
tions, coupled with the first alternative for l(~r) above" here d is the sym- 
metric difference distance between binary relations, p - - 1 ,  and S is, for 
instance, the set of all equivalence relations or the set of all linear orders 
(see Barth61emy and Monjardet 1981) On the other hand, these optimiza- 
tion problems are simple to solve for some metric spaces (S ,d )  The fol- 
lowing section will show this to be the case when S is a median semilattice 
and d is its associated metric, as when S is T, ,  O,,  or B,, 

4. Ordinal Results in the Consensus Problem 

4.1 Three Main Approaches to Achieve Consensus 

Let S be a set of  classifications on X and let V = {1, . ,  v} be an 
index set The consensus problem is the problem of defining, for any v-tuple 
(or profile) ~r ffi (sl . . . . .  sv) E S v, one or several consensus classifications. 
Each of them is expected to be a good representative of the entire profile, 
i.e., to agree as well as possible with all the components of zr. Especially, 
one may seek a consensus function c'SV---*S that assigns a single consensus 
classification C (~r) to any profile ~r. 
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The three main approaches to defining consensus functions are the con- 
structive, the axiomatic and the optimization ones Very simple illustrations 
of these approaches are provided by the arithmetic mean, viewed as a con- 
sensus function on profiles of numbers. The mean is obtained by sequences 
of sums and divisions (constructive approach); it is the unique function 
satisfying linearity, bound conditions and invariance by permutation of 
indices (axiomatic approach), it minimizes the sum of its squared 
differences with the elements of the profile (optimization approach) 

Furthermore, this example prompts several remarks First, the interest 
in the mean as a consensus of tuples of numbers is precisely due to this 
convergence of properties of easy calculability, representativity, and optimal- 
ity Second, important consensus results concern relations between the 
three approaches that are consequences of mathematical results derived 
from the structural properties of the domain S Third, following Neumann 
and Norton (1985), we emphasize the diversity of consensus problems and 
consensus functions though the mean has good properties, it is not the only 
consensus of numbers used in practice 

In this section, we present some ordinal concepts and results that turn 
out to be useful in research on the consensus of classifications Lattice poly- 
nomials are typically ordinal construction rules, some of them correspond to 
well-known consensus rules (Section 4.2), their computational time is a 
polynomial function in n and, in most important cases, in v (Section 4 3) 
Join irreducible elements are the abstract ordinal counterpart of various ele- 
mentary entities (ordered pairs, clusters, ) involved in axiomatic Arrow- 
like approaches (Section 4.4). Their use leads to a unified presentation of a 
number of axiomatic characterizations of polynomial consensus rules (Sec- 
tion 4 5) In the optimization approach, we consider medians, already 
defined at the end of Section 3 In median semilattices, like T, ,  0 , , ,  and 
B,,, the majority rule polynomial (the algebraic median of Section 2 3) gives 
always a median, one that is unique if v is an odd number (Section 4 6). 
Thus the three approaches converge in this case Indeed, this fact is an 
extension of the properties of the median of numbers, the most frequently 
used alternative to the mean as a consensus of numbers Sets of numbers 
and median semilattices have just enough common structural features to 
admit similar solutions to the consensus problem, with similar properties 

4.2 Consensus Rules and Lattice Polynomial Functions 

In this section and the following ones, we assume that S is a meet 
semilattice A lattice polynomial consensus rule Cw may be associated with 
any family W c p(V) of subsets of V For any profile ~r ~ (sl . . . . .  sv) in 
S v , 
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cw(~) --- V A s~ 
WEW lE W 

where it is assumed there is at least one nonempty set W in W. Note that 
rule Cw does not change when W is replaced by the set of its minimal ele- 
ments (relative to inclusion order). 

Such consensus rules constitute the general formalization of a natural 
idea. For any so in S, if there is W in W such that all the i 's in W agree 
about the fact that so~< si, then the consensus Cw(rr) is such that s0~< Cw(~-) 
too. In this sense, any W in W is a so-called decisive subset of indices. 

Indeed Cw is defined as a function if and only if the joins involved exist 
for any profile ~'. This is the case if S is a lattice. Otherwise, c w works for 
some families W (for instance, if lwl = 1) and does not for other ones (for 
instance, if there are two distinct singletons in W) It is not difficult to 
extend to any median semilattice the observation, about n-trees, in Section 
2.3 in a median semilattice, Cw is defined as a function when W is a gen- 
eralized majoritary family where any two decisive subsets intersect The 
corresponding polynomial consensus rule Cw is said to be a generalized 
majoritary rule. When IWl = 1, cw is a meet and corresponds to an oli- 
garchic, or strict consensus rule such that, for some nonempty W c V 

c(~')ffi ,'#w s~ .  

Special cases of oligarchic rules occur when W = V or when W = {i} for 
some i in V: 

c(*:) = A si (unanimity rule); 
iEV 

c (,r) = s~ (dictatorial rule). 

When unanimity is replaced by agreement between a given number w of 
elements of ~r, we get the quota rule cw (identical to unanimity for w = v) 

cw (~r ) = V , A  w s, . 
wc_v.lWlffiw " 

In a median semilattice, polynomials corresponding to quota rules are 
defined as functions for w >  v/2 The case where w is the least integer 
greater than v/2 corresponds to the well-known majority rule: 

m (~') = V A s; 
wc_ v,I wl> v/2 i~ w 
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All these definitions dualize in join semilattices by exchanging join and 
meet operators. We obtain lattice polynomials in the dual form, some of 
them corresponding to the so-called dual oligarchic rules (joins of elements 
of ~-), dual majority rule, and so on In lattices, we have lattice polynomials 
in both forms. In distributive lattices and in median semilattices for 
w > v / 2 ,  the quota rule with fixed w and the dual quota rule with 
w' = v - w + 1 are the same, by laws of distributivity. 

cw(=) = V A = A V s~ 
w~v,  tWl=w i~w w~v,  lWl= v-w+l i~w 

= c v - w + l  • 

Especially, for odd v, majority and dual majority rules are the same. 

In the following sections, we recall or establish properties of polynomial 
rules One has to observe that, sometimes, these rules do not give interest- 
ing consensus classifications For instance, when the n-trees of a profile 
7r E T~ are too different, the majority rule n-tree is the bush T~ with only 
trivial clusters Several nonpolynomial consensus methods on n-trees have 
been proposed (Adams 1972, Neumann 1983, Stinebrickner 1984, Finden 
and Gordon 1985, Neumann and Norton 1985). Though the properties of 
these methods are not always clear, they may give nontrivial consensus n- 
trees in situations where polynomial rules do not work satisfactorily One 
may use a consensus index (see Section 3 4) in order to avoid using a con- 
sensus n-tree when the elements of the profile are irreconcilable The situa- 
tion is quite the same in the cases of ordered trees or Buneman trees 

4.3 Some Computational Considerations 

Clearly, the usefulness of lattice operations in construction rules 
depends on their computational time complexity It was recalled in Section 
3 that the lattice operations in P ,  and UL,, and the meet in T,,, O,  and B, 
are polynomial in n. In the three median semilattices, the join is the union 
of subsets of  at most n elements (clusters, partitions, or splits, respectively). 
Hence, whenever it is defined, each of the rules of the previous paragraph 
leads to an n-polynomially computable function Nevertheless, the compu- 
tation of Cw(W) by polynomial formula involves lWl - 1 join operations and 
g w~w (I W I -  1) meet operations, a number that may be exponential in v, 
as it is for the majority rule. Fortunately, there is another way to compute 
any quota rule consensus in a time polynomial both in v and n (Monjardet 
1980). 

Let ~r = (T 1 . . . . .  Tv) E Tffbe a profile of, say, n-trees. Then clusters 
in cw0r) are exactly those present in at least w of the T~'s This property 
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follows from distributivity laws and from the fact, that will be emphasized in 
the next paragraph, that clusters correspond to join-irreducible elements in 
T, For each cluster C present in n-tree T~, for some i in V, one has to 
enumerate the n-trees of the profile that contain C Then, the total number 
of occurrences to examine is O(v2n) .  The situation is the same for ordered 
trees and Buneman trees, with partitions and splits instead of clusters. 

Quota rule polynomials in P,  or Ut.,,, constitute a more complex case. 
First, we begin with partitions, indeed equivalence relations will be con- 
sidered instead of them. We bring the case of equivalence relations closer 
to the previous distributive ones by using another expression of lattice poly- 
nomials of equivalence relations 

Cw(,r)= V A R,=~,( U n R,), 
WEW iE W WEW iE W 

where rr = (R l . . . . .  R,,) is a profile of equivalence relations on X and ~ is 
the transitive closure on binary relations Because of ditributivity of the 
boolean lattice of all binary relations on X, the pairs in 

R ' =  O n Ri 
w c  v, l wl>~ w iE w 

are those present in at least w of the Ri's. Then, the computation of quota 
rule polynomials may be done in two steps The first step is the recognition 
of the pairs in R' The second step is the determination of the transitive 
closure of R', c,,,(1r)---~(R'); this second step requires O(max(n ,JR ' [ ) )  
time (see for instance Gibbons 1985). Notice that this method does not 
work for polynomials in the dual form 

Under duality, the situation for ultrametrics is similar First, for each 
pair ( x , y )  one finds the w-th greatest value of the numbers U,.(x,y), i E V 
This is a well-known v-linear searching problem (Knuth 1973). Then, one 
uses an efficient single-linkage algorithm on the resulting valued relation in 
order to compute the dual w-quota rule polynomial, corresponding to the 
w-quota rule polynomial for dendrograms, in time polynomial in v and n 
Single linkage is the same as the ultrametric anticlosure which, under dual- 
ity, generalizes transitive closure to valued relations, its computation may be 
done with O ( n  2) comparisons of numbers (Hartigan 1975). 

4.4 An Ordinal Framework for the Arrow-like Approach 

The main illustrations of axiomatic characterizations in consensus stu- 
dies are given by Arrow's famous theorem (1951) and by many results of 
the same type in various domains Classification takes now a prominent 
place among them. 
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One may distinguish three common elements in the general design of 
these results, the complex objects that have to be aggregated are described 
by collections of elementary entities, the main condition is an axiom of 
independence or neutrality that turns out to be strong enough to determine 
almost the general form of compatible consensus functions, one or several 
other subsidiary axioms eliminate some a priori undesirable functions. 

For a unified ordinal presentation of several results, we first consider a 
class of typically ordinal elementary entities, whose existence is a conse- 
quence of latticial structure Let S be a meet semilattice. An element t in 
S is said to be join-irreducible if t cannot be expressed as the join of two ele- 
ments s, s ' i n  S, both distinct from t t - -  s V s ' impl i e s  that s =  t or 
s ' =  t. The property given in Section 2 2, that any element of S is the join 
of a collection of join-irreducible elements, follows from this definition 
Meet-irreducible elements are defined dually. In Section 2.2, join- 
irreducible (called elementary) and meet-irreducible (called coelementary) 
ultrametrics have been described Let J be the set of all join-irreducible 
elements of S Any element s E S may be described by a collection of ele- 
mentary facts t~< s holds or does not hold for each t E J 

Table 3 describes join-irreducible elements t and elementary facts t~< s 
for classification lattices or semilattices (under duality in the case of 
ultrametrics) Our main Arrow-like axioms are related to these join- 
irreducible elements and elementary facts In this ordinal framework, the 
classical independence of  irrelevant alternatives axiom for a consensus function 
c SV ---, S becomes 

(1) for any t E J, ~-= (s I, ,s,,) E S z, lr'--- (s'l . . . .  s'~) E S z, 
i f{i  t<xsi} ~ {i t<~s'i}, then t<<.c(~r) if and on ly i f  tx<c(~-') 

The meaning of this axiom is that c is decomposable into elementary con- 
sensus functions, each of them related to an element of J A stronger 
axiom is the neutrality axiom (N) which states that elementary consensus 
functions are all the same 

(N) for any t , t '  E J and ~',~r' E S z, 
if {i t<~s~} ~ {i t'<~s'j}, then t<~c(rr) if and only if t'<~c(~r') 

Our strongest main axiom is the axiom (NM) of monotonic neutrality 

(NM) for any t,t '  E J and 7r,~r' E S v, 
i f{i  t<~si} c_ {i t'<~s'i},.then t<~c(Tr) implies t '~c(~r').  

Finally, one has to choose some subsidiary axioms Arrow-like results 
that differ only on such axioms are generally almost identical. In this study, 
we shall take a well-known subsidiary axiom, not the weakest possible one 
in many situations, the Pareto axiom (P)" 

(P) for any zr E S v, c(lr)>~ i~z si. 
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Table  3 

Set 

P. 

UL ,t 

DL it 

T,, 

,, 

B,, 

Join-irreducible elements t 

partitions P~I with a unique 
cluster {x,y] and singletons 
otherwise 

meet-irreducible ultrametrics 
U ' ~  U(ho ,xy )  such that 
U ' ( x , y )  -- X,, for some X,, E L, 
x , y  E X, x ;~ y ,  and 
U'(x ' ,y ' )  = ! otherwise 

dendrograms D ' =  D(h, , ,xy)  
such that 
D'(k)  = P~ if O~<,X.,<h. 
D'(h ) ~ P,,, if h o <<.h < l 
D' ( I )  : IX} 

n-trees Tc with a unique 
nontrivial cluster C 

ordered trees associated 
with chains of  partitions 
containing a unique 
nontrivial partition P 

Buneman trees defined by 
a unique split cr 

fact t<xs, tEJ ,  s E S  

x and y are in the 
same cluster in P 

U ( x , y )  <<. X o 

,X ~>h o implies that x 
and y are in the same 
cluster in D ( h )  

CET 

P is a partition in 
the chain corresponding 
to the ordered tree O 

cr is a split of  B 
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Indeed (P) is an axiom of local unanimity. It is equivalent to the condition 
that for any t in J,  if t<~s i holds for all the si's in the profile, then t<<.c(~r) 
also holds for the consensus c (~-). 

4.5 Axiomatic Characterizations of Polynomial Consensus Rules 

The earliest Arrow-like result in cluster analysis is Mirkin's (1975) 
characterization of oligarchic rules on partitions. An improved version of 
his result is the following. 

Theorem 4.1 A consensus function c on partitions is either oligarchic or else the 
constant function c(¢r) -- {X} i f  and only i f  c satisfies axioms (1) and (P). 

This result may be obtained as a consequence of a more general one 
concerning dendrograms In this case, axiom (I) is equivalent to the thres- 
hold binariness axiom on ultrametric consensus functions proposed by 
Leclerc (1984) It leads to threshold oligarchic rules which do not 
correspond to polynomials of dendrograms or ultrametrics Consider an 
arbitrary antitone mapping W.  L ---" P(V) (i e ,  h >i ~,' implies 
W(X) _ W(~')) and define for any ~" in DLv., and ), in L 

(x)= A D; (x) 
i~ w(~) 

By a usual convention, if W(h)  = ~ then c (~r) (X) = {X} If there is some 
h in L such that W(h) # ~,  the consensus function c is called threshold oli- 
garchic otherwise c(rr) is the maximum of DL,,, so that c(~r) (h ) - -  {X} 
for all h From Leclerc's Theorem 8.2, one obtains the following result 

Theorem 4.2 A consensus function c on dendrograms is either threshold oli- 
garchic or else gives always the maximum dendrogram if  and only is C satisfies 
axioms (I) and (P). 

In order to obtain oligarchic consensus functions, one must introduce 
another axiom that ensures W is constant For instance, the flatness axiom 
(F) specifies a kind of neutrality with regard to L 

for any ,r , ,r '  E D~n and h ,h '  E L, 
if Dr(h) -- D'~(~.') for all i E V, then c(~')0.)  --- c(~r')(h') 

Corollary 4.3 A consensus function c on dendrograms is either oligarchic or else 
gives always the maximum dendrogram if  and only i f  c satisfies axioms (I), (P) 
and (F). 
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Recently, Neumann and Norton (1985) have obtained a dual result on 
partitions, with an extension to dendrograms This characterization may be 
restated in a form similar, under duality, to that of Theorem 4 1. Consider 
P ,  as a join-semilattice and define dual oligarchic rules as those correspond- 
ing to joins Let (P') and (I') be the axioms derived from (P) and (I) by 
dualization. In (I') elementary facts have the form t>>.s, where s is in S 
and t is in J', the set of meet-irreducible elements in S Meet-irreducible 
partitions are those with exactly two clusters. Then, from Neumann and 
Norton's result, we have the following 

Theorem 4.4 A consensus function c on partitions is either dual oligarchic or 
else the constant function c(1r) = Po if  and only i f  c sati~ies axioms (19 and 
(P'). 

In these results, it would be easy to add another condition in order to elim- 
inate constant functions 

Now we present general Arrow-like results for median semilattices In 
that case it is possible to have, with axiom (I) only, very different elemen- 
tary consensus functions related to elements of J. Indeed, with axiom 
(NM) instead of (I), one gets a characterization of generalized majority rule 
(Barth61emy et al. 1984a, 1984b, Monjardet 1986), with a particularization to 
n-trees due to McMorris and Neumann (1983). 

Theorem 4.5 Let S be a median semilattice, different from a distributive lattice, 
and c S v _ .  S a consensus function on S. Then c satisfies (NM) and (P) i f  
and only i f  c is given by a polynomial consensus function Cw for some generalized 
majority family W.  

Corollary 4.6 A consensus function on n-trees corresponds to a generalized 
majority rule i f  and only i f  it satisfies axioms (NM) and (P). 

Similar particularizations of Theorem 4 5 may be stated in the cases of 
ordered trees and Buneman trees Theorem 4 5 remains true for distributive 
lattices with the addition that in this case one can also get the constant func- 
tion c giving always the greatest element of the lattice 

With some change of subsidiary axioms, it is possible to obtain a 
specific characterization of the majority rule polynomial m defined in Section 
4 2. In the papers cited above, Theorem 4.5 is followed by a corollary of 
this type, using axioms of symmetry (VS) with regard to V and 2- 
idempotence (2ID) 

(VS) c is invariant by permutation of indices in rr. 

(2ID) If there exists s , s '  E S such that any element of ~" is either s or s', 
then c(1r) E {s,s'} 
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Corollary 4.7 Let S be a median semilattice and c S v ~ S be a consensus 
function on S Then c is given by the majority rule if  and only if it satisfies 
axioms (NM), (VS) and (2ID) 

It is possible to characterize majority rule on n-trees, ordered trees, or Bune- 
man trees by particularizations of corollary 4 7 

Before concluding this discussion of Arrow-like approaches, we make a 
brief survey of some results where main axioms other than those defined 
above have been used Oligarchic rules in median semilattices are character- 
ized by replacing axiom (NM) in Theorem 4.5 by a similar one, where t 
may be any element of S (Barthelemy et al 1984a; Monjardet 1986) In 
several works, the main axioms impose the stability of consensus functions 
A consensus function c : S v _.~ S is called stable when, for any Y c X, if 
two profiles ~r and ~r' induce pairwise identical classifications on Y, then 
c (rr) and c(rr') induce again the same classification on Y Stability proper- 
ties may be also defined for classification methods For instance, R6gnier 
(1977) has pointed out the triviality of classification functions with dissimi- 
larities on X as domain and partitions as range, when stability is assumed. 

In classification or preference consensus problems, stability axioms are 
not as related as (I) to the corresponding ordinal structures, but they are 
quite natural The works on partitions or ultrametrics by Mirkin (1975), 
Leclerc (1984a), and Neumann and Norton (1985) are based upon stability 
conditions In the case of partitions, stability is equivalent to (I) In the 
case of dendrograms, stability may be expressed by Leclerc's binariness 
axiom, it is then weaker than (I) and leads to a class of consensus functions 
that includes threshold oligarchic ones On the other hand, in some cases, 
stability turns out to be stronger than (NM) and leads, as in Arrow's 
theorem, to dictatorial consensus rules this is the case for tree quasi-orders 
(McMorris and Neumann 1983), n-trees with a further neutrality condition 
(Neumann 1983, by theorems 1 and 2), and unrooted n-trees, a special class 
of Buneman trees (McMorris 1985) 

An important role of order theory may be to provide general results on 
the consensus problem that are particularizable in cluster analysis as well as 
in other fields Theorem 4 5 is a good illustration of that claim Another 
one is a recent characterization, due to Janowitz (1985), of generalized 
majority rules by a prot/erty of neutrality that is close to axiom (N) This 
result applies to many situations, but, in its present form, does not seem 
adequate for consensus in lattices In the case of n-trees, the particulariza- 
tion of the Janowitz result corresponds to Neumann's (1983) lemma imply- 
ing Corollary 4 6 above 

4.6 Median Semilattices: Obtaining Median Classifications 

Thedetermination and the construction of an optimal consensus is gen- 
erally a difficult problem of combinatorial optimization Restricting the 
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problem to the structure of median semilattices is a fortunate special case 
where a median may be always obtained by an algebraic formula Extending 
a result of Barbut (1961) on distributive lattices, Bandelt and Barth61emy 
(1984) have shown the following result. 

Theorem 4.8 Let S be a median semilattice. For any profile rr in S v, majority 
rule provides a median of  rt for the latticial (MPL) metric related to S. Further- 
more, if v is odd, this median is unique. 

In the same paper, Bandelt and Barth61emy show this uniqueness to be a 
characteristic property of median semilattices. By particularization, and tak- 
ing into account the construction of majority consensus as a join of majori- 
tary join-irreducible elements (Section 4.3), one obtains a result due to Mar- 
gush and McMorris (1981). 

Corollary 4.9 Let zr E T ff be a profile o f  n-trees. The set o f  all clusters present 
in more than half o f  the ti's is the collections of  clusters of  an n-tree T that is a 
median ofzt for the MPL metric on T , .  Moreover, i f  v is odd, then T is unique. 

Similar results hold for ordered trees and Buneman trees. 
It is possible to determine all the n-trees that are medians of an even 

profile ~" = (Tl . . . . .  T~) by starting from the majority rule n-tree m(~') 
and completing M(~') by clusters present in half of the T,.'s in a compatible 
way. Clearly, distinct maximal median n-trees may exist; the problem of 
finding a median n-tree with as many clusters as possible may have several 
solutions. 

Similar constructions for median ordered trees, or Buneman trees, 
exist. These constructions may be derived from the straightforward exten- 
sion to median semilattices of the following characterization of medians in a 
finite distributive lattice S (Barbut 1967, Monjardet 1980). an element 
t E S is a median of  the profile ~r = (sl . . . . .  s~) E S v for the latticial MPL 
distance on S if and only if it is contained between majority and dual major- 
ity rule consensus where, by distributivity laws, the latter is given by the 
quota rule for w = v/2. 

m(~r) = V A si<~t 
we_ v, lwl=~/2+l ~ w 

A V s, 
wc_v, lwt=v/2+i ~ w  

= V A, w 
w'g V,l W'l= v/2 
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Theorems 45  and 4.8 establish the convergence of the three 
approaches of the consensus problem in median semilattiees" majority rule, 
given by an algebraic formula, is axiomatically characterized and provides 
one (sometimes among others) solution of a natural optimization problem. 
The possible other solutions of this optimization problem (i.e, the set of all 
the medians) have been described Moreover, the whole median procedure 
can be also axiomatically characterized. Prompted by Young and 
Levenglick's characterization (1978) of median linear orderings, Barthtlemy 
and McMorris (1986) give a characterization of all the median n-trees 

The research of median partitions, or dendrograms, is a much more 
difficult problem A study by Rtgnier (1965) on median equivalence rela- 
tions, with the symmetric difference metric, was probably the first work on 
consensus of classifications The determination of these median equivalence 
relations, probably an NP-complete problem, was transformed by Rtgnier 
into the resolution of a linear integer programming problem. Since this 
work, significant computational progress has been made (Marcotorchino and 
Michaud 1982), based especially on the use of a performing linear program- 
ming code 
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