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We investigated large-scale systems organization of the whole
human brain using functional magnetic resonance imaging (fMRI)
data acquired from healthy volunteers in a no-task or ‘resting’ state.
Images were parcellated using a prior anatomical template, yielding
regional mean time series for each of 90 regions (major cortical gyri
and subcortical nuclei) in each subject. Significant pairwise func-
tional connections, defined by the group mean inter-regional partial
correlation matrix, were mostly either local and intrahemispheric or
symmetrically interhemispheric. Low-frequency components in the
time series subtended stronger inter-regional correlations than high-
frequency components. Intrahemispheric connectivity was generally
related to anatomical distance by an inverse square law; many
symmetrical interhemispheric connections were stronger than pre-
dicted by the anatomical distance between bilaterally homologous
regions. Strong interhemispheric connectivity was notably absent in
data acquired from a single patient, minimally conscious following
a brainstem lesion. Multivariate analysis by hierarchical clustering
and multidimensional scaling consistently defined six major systems
in healthy volunteers — corresponding approximately to four neo-
cortical lobes, medial temporal lobe and subcortical nuclei — that
could be further decomposed into anatomically and functionally
plausible subsystems, e.g. dorsal and ventral divisions of occipital
cortex. An undirected graph derived by thresholding the healthy
group mean partial correlation matrix demonstrated local clustering
or cliquishness of connectivity and short mean path length com-
patible with prior data on small world characteristics of non-human
cortical anatomy. Functional MRI demonstrates a neurophysiological
architecture of the normal human brain that is anatomically sensible,
strongly symmetrical, disrupted by acute brain injury, subtended
predominantly by low frequencies and consistent with a small world
network topology.
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Introduction

Functional magnetic resonance imaging (fMRI) of the human

brain reveals a complex, structured neurophysiological net-

work, even when the person lying in the scanner has not been

asked to do anything more cognitively demanding than simply

to ‘rest’. For example, an fMRI time series extracted from

somatosensorimotor cortex was specifically correlated with

time series extracted from other components of the motor

system, although the subject was not performing a motor task

(Biswal et al., 1995). Similar examples of resting state correl-

ation have been reported by selective sampling of time series

from one or a few brain regions, including primary visual cortex

and amygdala (Lowe et al., 1998), hippocampus (Stein et al.,

2000), perisylvian language centres (Hampson et al., 2002) and

components of a putative ‘default mode network’ (Greicius

et al., 2003). Strong, symmetric interhemispheric correlations

between bilaterally homologous brain regions have been

demonstrated for fusiform gyrus, basal ganglia and thalamus

(Lowe et al., 1998; Cordes et al., 2002). Another consistent

feature is that resting state correlations are often subtended by

low-frequency components of the MR signal, typically <0.1 Hz

(Biswal et al., 1995; Lowe et al., 1998; Cordes et al., 2000).

Comparable low-frequency fluctuations in resting brain hemo-

dynamics have been measured using other techniques such as

laser Doppler flowmetry and optical imaging (Mayhew et al.,

1996; Hudetz et al., 1998).

The neurobiological basis of these observations has been

disputed. There are several potentially confounding sources of

(co)variance in fMRI time series, including head movement and

(possibly aliased) cardiac or respiratory pulsation. However,

time series extracted from voxels representing blood vessels or

ventricular cerebrospinal fluid (CSF) did not show the pattern

of low-frequency correlation that was typical of time series

extracted from diverse brain regions (Cordes et al., 2001;

Rombouts et al., 2003). Moreover, using high sampling rates

[repetition time (TR) = 400 ms] to isolate cardiac and respiratory

sources without aliasing, strong inter-regional correlation

persisted in the low-frequency range ( <0.05 Hz) and this was

not attributable to physiological noise (Cordes et al., 2001).

Further fast-sampling studies were reported to rule out a major

contribution of head movement or instrumental instability

(Cordes et al., 2002).

In addition to these experiments seeking to refute cardiore-

spiratory and other biologically trivial causes, there have been

a number of studies more directly affirming neural mechanisms

for resting state correlations. It has been shown that such

correlations are stronger in BOLD than in flow-weighted echo-

planar imaging data (Biswal et al., 1997). Several groups have

shown that correlation between brain regions at rest is modu-

lated by imposition of cognitive tasks (Lowe et al., 2000). For

example, performance of a language task enhanced correlation

between inferior frontal and superior temporal regions that

were positively correlated at rest (Hampson et al., 2002);

whereas resting state correlation between posterior cingulate

cortex and other components of a default mode network was

attenuated by performance of a demanding cognitive task but

unaffected by simple visual stimulation (Greicius et al., 2003).

There is also evidence that resting state correlation can be

affected by nervous system disorders such as multiple sclerosis

and callosal agenesis which degrade myelination or integrity of

axonal tracts between correlated regions (Quigley et al., 2001).

Resting state correlations have often been discussed in terms

of functional connectivity, broadly defined as the statistical

association or dependency between anatomically distinct
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neurophysiological time series (Aertsen et al., 1989; Friston,

1993; Horwitz, 2003). Recent resting state fMRI studies have

progressed methodologically by measuring connectivity be-

tween a larger number of brain regions m and by using multi-

variate statistical methods, such as hierarchical cluster analysis

(Cordes et al., 2002) to summarise graphically the potentially

large number of pairwise correlations or dissimilarities [(m2
–

m)/2] that can result from a more comprehensive approach.

Another methodological development has been adoption of the

partial correlation coefficient to estimate specific associations

between regions, factoring out the contributions to pairwise

correlations that might arise due to global or third-party effects

(Hampson et al., 2002). An analogous method in the frequency

domain is the partial coherence, which provides a measure of

frequency-specific association between two regions (Sun et al.,

2004). Partial correlations (or coherences) can be used to

build undirected graphs, in which connections (edges) be-

tween nodes (vertices) depict their conditional dependence

(Whittaker, 1990; Stam, 2004).

Here we describe the first whole brain analysis of functional

connectivity based on human fMRI data acquired at rest. A prior

anatomical template image was used to extract 90 regional

mean time series from each of 12 individual images acquired

from healthy volunteers and the group mean inter-regional

partial correlation matrix was estimated. We also acquired com-

parable data from a single patient with acute brain injury. We

applied complementary methods of multivariate and graph

theoretical analysis to characterize and visualize functional

architecture of the healthy human brain, paying particular

attention to the evidently important dependencies of inter-

regional functional connectivity on the anatomical relationships

between regions.

Materials and Methods

Functional MRI Data Acquisition: Sample, Scanning and
Pre-processing
Twelve healthy volunteers (7 male, 5 female) with a mean age of 30

years (range 23--48 years) were recruited by advertisement locally. A

single male patient in a state of minimal consciousness following acute

brainstem ischaemia was also studied. Computed tomography data on

the patient showed high signal intensities in the pons, midbrain and

both cerebral peduncles, extending to the left subthalamic region.

There was an absence of signal in the basilar artery with probable

atheromatous occlusion of the left posterior cerebral artery and right

middle cerebral artery.

The study was approved by the Addenbrooke’s NHS Trust Local

Research Ethics Committee and all healthy participants gave in-

formed consent in writing. For the study of the patient, informed assent

was obtained in writing from his next of kin. Each volunteer

was scanned while lying quietly in the scanner at rest and with eyes

closed.

In each scanning session, 259 gradient-echo echo-planar imaging

(EPI) volumes depicting BOLD contrast were acquired using a Bruker

Medspec S300 scanner operating at 3.0 T (Bruker Medical, Ettlingen,

Germany) with the following acquisition parameters: number of slices =
21 (interleaved), slice thickness = 4 mm, interslice gap = 1 mm, matrix

size = 64 3 64, flip angle = 90�, TR = 1.1 s, TE = 27.5 ms, in-plane resolution

3.125 mm. The first three volumes were discarded prior to analysis to

allow for T1 saturation effects, leaving 256 volumes available for analysis.

Each image was corrected for geometrical displacements due to

estimated head movement, and co-registered with the Montreal

Neurological Institute (MNI) EPI template image, using SPM2 software

(http://www.fil.ion.ucl.ac.uk/spm). The data were not spatially

smoothed.

Anatomical Parcellation
Regional parcellation of fMRI datasets after registration with the MNI

template image was done using the anatomically labelled template

image previously validated and reported by Tzourio-Mazoyer et al.

(2002). This parcellation divides each cerebral hemisphere into 45

anatomical regions of interest (ROIs), which are listed in Table 1

together with the abbreviations used to refer to them in this study. A

regional mean time series was estimated simply by averaging the fMRI

time series over all voxels in each of 90 regions over the whole brain;

time series were not normalized by mean subtraction before averaging

in each region.

Estimation of the Inter-regional Partial Correlations
Given a set of m random variables, the partial correlation matrix is

a symmetric matrix in which each off-diagonal element is the correl-

ation coefficient between a pair of variables after partialling out

(conditioning under normality) the contributions to the pairwise

correlation of all other variables included in the dataset. In this case,

therefore, the partial correlation between any two brain regions partials

out the effects of the 88 other brain regions defined by the template

image.

To estimate the partial correlation matrix for each healthy volunteer

and the patient, we used the method described in Whittaker (1990).

This method is based on the fairly general assumption of multivariate

normality of the observations. In the case of fMRI, however, we are

dealing with a series of t time points and we therefore must assume

jointly Gaussian stationary multivariate stochastic processes. Specif-

ically, we will be dealing with the zero lag (instantaneous) cross-

covariance and partial cross-correlation matrices, which, for simplicity,

we will call covariance and partial correlation matrices.

The first step is to estimate the sample covariance matrix S from the

(m = 90, t = 256) data matrix Y of observations for the individual. Each

component of S contains the sample covariance value between two

regions (say j and k)

sj ;k = 256
–1 +

256

t =1

ðyj ðt Þ – �yj Þðykðt Þ – �ykÞ ð1Þ

where �yj denotes the average over time of the observations in a given

region. Once S is estimated, it must be inverted and, in general, this

requires time series longer than the number of regions, i.e. t >m. Finally,

the off-diagonal elements of the inverted matrix S
–1 must be rescaled to

obtain the sample partial correlation matrix R

rj ;k = –s
–1

j ;k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s

– 1

j ;j s
–1

k;k

q.
ð2Þ

Note that s–1j ;k here denotes the fj,kgth element of the inverted matrix

S
–1, not the inverted value of the fj,kgth element of matrix S.

Testing for Non-zero Partial Correlations
The partial correlation matrices individually obtained from each one of

the n healthy volunteers (i = 1,. . ., 12) were averaged to estimate the

healthy group mean inter-regional functional connectivity matrix ( �R),
comprising 4005 unique inter-regional partial correlations.

To test the null hypothesis that the (mean) partial correlation was

zero between any pair j,k of regions, we conducted multiple one-

sample t-tests, using the mean �rj ;k and standard deviation sdðrj ;kÞ of the
individually estimated partial correlations (n = 12). Although Fisher’s r-

to-Z transform was applied to improve normality, it had only marginal

effect due to the moderate values of the observed partial correlations.

The t-test was performed for all 4005 possible pairs of regions and,

consequently, a correction for multiple comparisons was strictly

necessary. The false discovery rate (FDR) approach was applied to

find a threshold that would restrict the expected proportion of type I

errors to q < 0.05. We used the procedure described in Benjamini and

Yekutieli (2001), which takes into account the lack of independence

between tests. The first step involved sorting the 4005 individual P-

values derived from the t-tests in ascending order

P1 <P2 < P3 . . . :P4005 ð3Þ

Then the number of null hypotheses to be rejected was given by
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k = max i : pðiÞ<
i

4005
0:05 +4005

j =1 1=j
� �.� �

ð4Þ

and all t tests with a P-value equal or smaller than Pk were considered

significant, i.e. indicative of non-zero partial correlations.

Frequency Dependence and Scaling Properties
of Functional Connectivity
We considered the relationship between functional connectivity and

frequency or scale of the time series components contributing to

(partial) correlation between regions. A simple way to do this is by

dividing each ‘raw’ time series into its high- and low-frequency

components. To isolate the high-frequency components, we computed

the discrete Fourier transform (Press et al., 1992) and set to zero the

Fourier coefficients corresponding to frequencies <0.007 Hz; to isolate

the low-frequency components we set to zero the equal number of

coefficients corresponding to frequencies >0.007 Hz. In both cases the

data were reconstituted in the time domain using the inverse Fourier

transform before further analysis; see Figure 1 for an example.

This analysis can be regarded as an intermediate step towards a full

analysis of functional connectivity in the frequency domain, in which an

analogous quantity to the partial correlation, the partial coherence,

pcoh, can be estimated for each of the Fourier frequencies (Brillinger,

1981; Sun et al., 2004):

pcohj ;kðkÞ = Mod f
– 1

j ;kðkÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f

–1

j ; j ðkÞf
– 1

k;kðkÞ
q. �

2
�

ð5Þ

where f –1
j ;k ðkÞ is the fj,kgth element of the inverted spectral density

matrix at frequency k (the equivalent of the covariance matrix in the

frequency domain). The use of partial coherences instead of partial

correlations naturally extends the concept of functional connectivity to

frequency-specific coherence as a measure of association between

distinct brain regions.

Another mathematical approach to the same general issue is based on

the discrete wavelet transform (DWT). The DWT decomposes the

variance in a time series over a hierarchy of scales (approximately

frequencies) and scale-specific functional connectivity between time

series can then be measured simply by estimating the covariance or

correlation between the wavelet coefficients of the two time series at

each scale of the decomposition. This provides a straightforward way of

assessing the scaling properties of functional connectivity, i.e. the

extent to which the correlation between any two time series is

subtended by signal components at different scales. For greater detail

on wavelet decomposition of covariance between bivariate time series,

see Serroukh and Walden (2000a,b); for background on scaling and

wavelet analysis of fMRI data, see Bullmore et al. (2004).

Anatomical Distance and Functional Connectivity
We considered the dependency of functional connectivity on anatom-

ical distance. Explicitly, we investigated the relationship between partial

correlation r estimated for a pair of resting fMRI time series and the

Euclidean distance D (in mm) between regional centroids in Talairach

space:

Dj ;k =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxj –xkÞ2+ðyj – ykÞ2+ðzj – zkÞ2

q
ð6Þ

where (xj,yj,zj) and (xk,yk,zk) are the Talairach coordinates of the

centroids for regions j and k.

Multivariate Analyses of the Healthy Group Mean Partial
Correlation Matrix
The mean partial correlation matrix for the group of healthy volunteers

was transformed to a matrix of dissimilarities by calculating the absolute

values of the partial correlations and subtracting them from 1,

disj ;k = 1–j�rj ;k j; leading to values in the interval [0,1].

This shift frompartial correlations to dissimilarities allowed us to apply

two complementarymultivariate techniques to exploratory visualization

of the positive semidefinite dissimilarity matrix: hierarchical cluster

analysis with an average linkage agglomerative algorithm (Krzanowski,

1988; see also Cordes et al., 2002, and Stanberry et al., 2003, for examples

of prior applications of hierarchical cluster analysis in fMRI) and classical

or metric multidimensional scaling (MDS) (Gower, 1966; Everitt, 1995;

see also Friston et al., 1996, and Welchew et al., 2002, for prior

applications of MDS to PET and fMRI data analysis).

Graph Theoretical Analysis
After averaging time series acquired from bilaterally homologous

regions in each healthy volunteer, the unihemispheric partial correl-

ation matrix (45 3 45) was probabilistically thresholded so that each

statistically significant connection could be represented as an un-

directed edge between regional vertices in a graphic rendering of the

whole brain functional network. For arbitrary size of the probability

threshold P applied to the partial correlation matrix, local density or

cliquishness of connections between vertices (regions) was estimated

by the clustering coefficient CP (Watts and Strogatz, 1998; Strogatz,

2001)

CP =
1

45
+
45

j =1

#Ej

#Vjð#Vj – 1Þ=2
ð7Þ

which is the average (over allm regions j: 1,. . ., 45) of a ratio. Its numerator

is the number of edges connecting neighbours of region j (#Ej) where

the neighbourhood of a region is defined as the set of all vertices that are

directly connected to that region by an edge. The denominator of the

ratio is the maximum possible number of connections between

neighbours of vertex j (where #Vj is the number of neighbours of

vertex j). For a regular or lattice network, C ~ 0.75; for random

networks, C ~ v/m (v being the average of #Vj and m being the total

number of vertices). The minimum path length, LP, is the average of the

shortest path length over each possible pair of vertices:

LP =
1

990
+
44

j =1

+
45

k= j+1

minflpathsði ; jÞg ð8Þ

where flpaths(i,j)g is the set of lengths of all possible paths connecting
vertices i and j through one or more edges, and the path length is

defined as the number of edges included in the path.

Table 1
Cortical and subcortical regions (45 in each cerebral hemisphere; 90 in total) as anatomically

defined by a prior template image in standard stereotaxic space

Region Abbreviation Region Abbreviation

Precentral gyrus PreCG Lingual gyrus LING
Superior frontal gyrus, dorsolateral SFGdor Superior occipital gyrus SOG
Superior frontal gyrus, orbital part ORBsup Middle occipital gyrus MOG
Middle frontal gyrus MFG Inferior occipital gyrus IOG
Middle frontal gyrus orbital part ORBmid Fusiform gyrus FFG
Inferior frontal gyrus, opercular part IFGoperc Postcentral gyrus PoCG
Inferior frontal gyrus, triangular part IFGtriang Superior parietal gyrus SPG
Inferior frontal gyrus, orbital part ORBinf Inferior parietal, but

supramarginal and
angular gyri

IPL

Rolandic operculum ROL Supramarginal gyrus SMG
Supplementary motor area SMA Angular gyrus ANG
Olfactory cortex OLF Precuneus PCUN
Superior frontal gyrus, medial SFGmed Paracentral lobule PCL
Superior frontal gyrus, medial orbital ORBsupmed Caudate nucleus CAU
Gyrus rectus REC Lenticular nucleus, putamen PUT
Insula INS Lenticular nucleus, pallidum PAL
Anterior cingulate and
paracingulate gyri

ACG Thalamus THA

Median cingulate and
paracingulate gyri

DCG Heschl gyrus HES

Posterior cingulate gyrus PCG Superior temporal gyrus STG
Hippocampus HIP Temporal pole: superior

temporal gyrus
TPOsup

Parahippocampal gyrus PHG Middle temporal gyrus MTG
Amygdala AMYG Temporal pole: middle

temporal gyrus
TPOmid

Calcarine fissure and
surrounding cortex

CAL Inferior temporal gyrus ITG

Cuneus CUN

The abbreviations listed are those used in this paper, which differ slightly from the original

abbreviations by Tzourio-Mazoyer et al. (2002).
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For a regular network, mean LP ~m/2v; for a random network, LP ~ ln

m/ln v. Thus regular networks have high cliquishness but relatively long

path lengths, whereas random networks have low cliquishness but short

path lengths. So-called ‘small world’ networks have intermediate prop-

erties, combining the short path lengths typical of randomnetworkswith

a higher degree of local clustering than is typical of random networks.

Results

Inter-regional Partial Correlations

The elements of the healthy group mean partial correlation

matrix were individually tested for significance and 76 pairs of

regions had non-zero partial correlations, as listed in Table 2

(P < 0.05, FDR). Most significant connections (44; 58%) were

intrahemispheric and often local, involving regions in the same

lobe and/or closely adjacent to each other anatomically.

Interhemispherically symmetric connections, involving bilat-

erally homologous regions in the two hemispheres, were also

relatively numerous (29; 38%). Interhemispherically asymmet-

ric connections (involving non-homologous regions in different

hemispheres) were infrequent (3; 4%).

The strength of correlation between bilaterally homologous

time series sampled from a single healthy individual is evident

by inspection of Figure 1. Fourier decomposition of these data

into high- and low-frequency components exemplifies the prior

generalization that resting state correlations are stronger at low

frequencies. Wavelet analysis shows an approximately linear

increase in the log of the variance of the wavelet coefficients at

each scale as a function of increasing scale (decreasing

frequency). This implies there is 1/f-like power law scaling in

both resting time series, i.e. the spectrum G is proportional to

a power law function of frequency f: G ~ f
a, with a = –1.52 for

left superior temporal gyrus (STG) and –1.44 for right STG.

There was also an approximately linear increase in the log of the

covariance between wavelet coefficients estimated from right

and left STG data as a function of increasing scale (decreasing

frequency), implying that power law scaling also applies to

inter-regional functional connectivity.

Relationships Between Functional Connectivity and
Anatomical Distance

As shown in the upper panel of Figure 2, shorter anatomical

distances (D < 2 cm) between centroids generally predicted

stronger functional connectivity between regions in the healthy

volunteers. Most possible connections at anatomical distances

>4 cm had functional connectivity randomly variable around

zero. The form of this non-linear relationship can be described

approximately by an inverse square law: r ~1/D2. A similar

Figure 1. Frequency dependence and scaling of resting-state functional connectivity between right and left superior temporal gyrus. Top panel: FMRI time series recorded in
a single subject from left and right superior temporal gyrus (STG). The two time series are evidently very similar despite the anatomical distance between these regions. Middle
panel: Low-frequency and high-frequency components of the left (solid line) and right (dashed line) STG time series are plotted after subtraction of means to facilitate direct visual
comparison. The low-frequency components are more strongly correlated than the high-frequency components. Bottom panel, left: Log-transformed wavelet coefficient variances
increase linearly with increasing scale (approximately decreasing frequency) of the wavelet coefficients for both left STG (solid line, open circles) and right STG (broken line, open
triangles). These plots indicate that each resting time series has a 1/f-like spectrum, with more variance at lower frequencies. Bottom panel, right: Log-transformed wavelet
coefficient covariances likewise increase linearly with scale of the wavelet coefficients, indicating that functional connectivity between these regions is subtended predominantly
(but not exclusively) by low-frequency components.
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relationship was observed in the patient’s data, although in the

context of much greater variability (Fig. 2, middle panel)

However, it was also notable that, for the healthy volunteers,

there were a number of functional connections between

regions that were much stronger than would be predicted as

a function of the anatomical distance between them. These

connections are defined in Figure 2 as greater than the 95%

quantile of partial correlations estimated in each 1 cm bin of the

distribution of Euclidean distances; these unusually strong,

mostly long-distance connections are listed in Table 2. Most of

them (28/36) were interhemispheric connections between

bilaterally homologous regions; the remainder were intrahemi-

spheric connections between left frontal regions (4/36),

between left inferior parietal lobule and left middle or inferior

frontal gyrus (2/36), and between left superior parietal gyrus

and left inferior parietal lobule or inferior temporal gyrus (2/

36). This pattern was entirely lost in the data acquired from the

minimally conscious patient — who showed no evidence of

unusually strong, long-range interhemispheric or left intrahemi-

spheric connectivity.

When the analysis of whole brain data from the healthy

volunteers is repeated after dividing each time series into high-

and low-frequency components, it is clear that partial correl-

ations consistently tend to be larger when estimated on the

basis of the low-frequency components of the time series. This

effect is most clearly seen for the symmetric interhemispheric

connections (Fig. 2, lower panel).

Hierarchical Cluster Analysis

The dendrogram resulting from hierarchical cluster analysis of

the healthy group mean partial correlation matrix is shown in

Figure 3a. The basic hierarchy of brain functional organization

broadly respected anatomical relations between regions and

could be heuristically designated lobar/sublobar/symmetrical.

In other words, symmetrical links between bilaterally homolo-

gous cortical and subcortical regions were consistently repre-

sented at the lowest level of the hierarchy.

At the highest level of the hierarchy, six large clusters were

identified, corresponding to four neocortical/paralimbic sys-

tems, one paralimbic/limbic system and one subcortical/limbic

system. One of the largest neocortical/paralimbic systems

comprised 22 regions of parietal, posterior cingulate and

(pre)motor cortices that are specialized for motor and spatial

attentional functions (Mesulam, 2000). Another large neocor-

tical/paralimbic system comprised 22 regions of orbitofrontal,

prefrontal and anterior cingulate cortices that have been

implicated in diverse strategic or executive functions (Duncan

and Owen, 2000). A third system comprised 14 regions of the

occipital lobe specialized for visual processing. The fourth

neocortical/paralimbic system comprised 12 regions of lateral

temporal cortex and insula specialized for auditory-verbal

functions. The paralimbic/limbic cluster comprised 10 regions

of medial temporal lobe and temporal pole that have been

implicated in mnemonic and affective processing. The pre-

dominantly subcortical cluster comprised 10 regions including

striatum, pallidum, thalamus and olfactory cortex.

At intermediate levels of the hierarchy, symmetrical pairs of

homologous regions were clustered together in configurations

corresponding approximately to sub-lobar or gyral domains; the

intermediate hierarchical structure of each of the six main

systems is represented in anatomical space in Figure 3b.

Table 2
Inter-regional partial correlations

Region 1 Region 2 Mean SD Probability Euclidean
distance (mm)

DCG.L DCG.R 0.502 0.092 3.25 3 10�10 14.8
CAU.L CAU.R 0.478 0.132 2.60 3 10�8 26.2
THA.L THA.R 0.437 0.111 1.29 3 10�8 24.0
PCUN.L PCUN.R 0.422 0.126 7.25 3 10�8 17.7
ACG.L ACG.R 0.407 0.115 4.64 3 10�8 12.8
IFGoperc.L IFGtriang.L 0.384 0.086 4.20 3 10�9 18.2
PUT.L PUT.R 0.382 0.173 4.75 3 10�6 0.38
SFGmed.L SFGmed.R 0.378 0.133 4.39 3 10�7 14.1
REC.L REC.R 0.360 0.158 3.87 3 10�6 13.5
IFGoperc.R IFGtriang.R 0.355 0.117 2.42 3 10�7 17.1
MTG.L MTG.R 0.350 0.114 2.38 3 10�7 113.1
LING.L LING.R 0.345 0.128 8.30 3 10�7 30.8
TPOsup.L TPOsup.R 0.340 0.126 8.19 3 10�7 88.3
SMA.L SMA.R 0.325 0.094 7.08 3 10�8 14.6
CUN.L CUN.R 0.324 0.156 9.95 3 10�6 19.4
MFG.L MFG.R 0.320 0.079 1.56 3 10�8 71.2
CUN.L SOG.L 0.319 0.100 1.64 3 10�7 11.4
SFGdor.L MFG.L 0.316 0.141 5.22 3 10�6 16.6
PCG.L PCG.R 0.309 0.151 1.25 3 10�5 12.8
CAL.L LING.L 0.308 0.134 4.11 3 10�6 17.3
ORBsup.R ORBmid.R 0.296 0.172 5.67 3 10�5 15.6
PUT.R PAL.R 0.290 0.099 4.46 3 10�7 8.2
SPG.L IPL.L 0.288 0.111 1.46 3 10�6 26.7
ORBsup.L ORBmid.L 0.288 0.092 2.25 3 10�7 14.8
STG.L STG.R 0.281 0.096 4.21 3 10�7 111.2
SFGdor.R MFG.R 0.280 0.107 1.36 3 10�6 18.7
PreCG.L PoCG.L 0.272 0.121 6.04 3 10�6 17.4
INS.L INS.R 0.269 0.085 2.03 3 10�7 74.2
PreCG.R PoCG.R 0.266 0.072 4.10 3 10�8 17.2
PHG.L PHG.R 0.265 0.148 4.61 3 10�5 46.6
SPG.L SPG.R 0.264 0.103 1.73 3 10�6 49.7
CAL.R LING.R 0.260 0.114 5.23 3 10�6 14.6
CAL.L CAL.R 0.259 0.132 2.13 3 10�5 24.0
ITG.L ITG.R 0.253 0.079 2.08 3 10�7 103.4
ROL.R HES.R 0.251 0.113 6.92 3 10�6 13.2
PreCG.L PreCG.R 0.243 0.076 2.05 3 10�7 80.3
HES.R STG.R 0.243 0.116 1.20 3 10�5 13.4
OLF.L OLF.R 0.241 0.138 6.37 3 10�5 18.4
SOG.R MOG.R 0.240 0.119 1.75 3 10�5 17.4
HES.L STG.L 0.234 0.088 1.35 3 10�6 11.5
ORBinf.L ORBinf.R 0.231 0.133 6.29 3 10�5 77.2
MTG.R ITG.R 0.227 0.112 1.67 3 10�5 22.3
CUN.R SOG.R 0.226 0.065 9.40 3 10�8 11.2
SFGdor.R SFGmed.R 0.225 0.083 1.11 3 10�6 27.1
TPOmid.L TPOmid.R 0.225 0.125 4.92 3 10�5 80.8
IPL.R SMG.R 0.225 0.125 4.83 3 10�5 23.8
IFGtriang.L ORBinf.L 0.224 0.084 1.30 3 10�6 27.7
HIP.L HIP.R 0.219 0.089 2.78 3 10�6 54.2
SOG.L MOG.L 0.215 0.120 5.33 3 10�5 20.2
MFG.L IPL.L 0.211 0.077 9.87 3 10�7 79.7
HIP.R PHG.R 0.208 0.100 1.37 3 10�5 11.8
SPG.L PCUN.L 0.205 0.056 5.32 3 10�8 19.9
IPL.R ANG.R 0.205 0.059 9.83 3 10�8 17.4
HIP.L AMYG.L 0.200 0.115 6.68 3 10�5 21.2
IPL.L IPL.R 0.196 0.083 4.16 3 10�6 89.4
PHG.L FFG.L 0.196 0.107 4.47 3 10�5 26.2
IFGtriang.R ORBinf.R 0.192 0.103 3.86 3 10�5 27.6
MFG.R IFGtriang.R 0.190 0.099 3.05 3 10�5 23.8
SPG.R PCUN.R 0.181 0.093 2.74 3 10�5 24.7
CAL.L LING.R 0.181 0.088 1.68 3 10�5 28.1
MTG.L ITG.L 0.179 0.099 5.13 3 10�5 22.5
ROL.L INS.L 0.177 0.096 4.24 3 10�5 22.0
OLF.L REC.L 0.176 0.071 2.68 3 10�6 23.3
STG.L MTG.L 0.176 0.081 1.03 3 10�5 16.2
ANG.L ANG.R 0.168 0.092 4.63 3 10�5 89.7
MOG.L IOG.L 0.165 0.062 1.54 3 10�6 24.4
MOG.L MOG.R 0.159 0.093 8.91 3 10�5 69.9
PCG.L PCUN.L 0.158 0.082 3.05 3 10�5 27.0
SPG.R ITG.R 0.156 0.090 7.42 3 10�5 93.3
IFGtriang.L IFGtriang.R 0.152 0.067 7.02 3 10�6 95.8
MFG.L IFGtriang.L 0.152 0.074 1.72 3 10�5 24.9
CAU.L THA.L 0.150 0.086 7.16 3 10�5 28.6
SFGmed.L ACG.L 0.150 0.076 2.40 3 10�5 21.8
ORBinf.R INS.R 0.141 0.079 6.10 3 10�5 29.6
IFGoperc.L IPL.L 0.138 0.075 4.44 3 10�5 64.8
IPL.L SMG.R 0.132 0.062 1.35 3 10�5 102.1

Seventy-six pairwise partial correlations were significantly non-zero (P-value set to control false

discovery rate\ 0.05) and these are listed in descending order of size. Bilaterally symmetric

interhemispheric connections (29) are highlighted in green; intrahemispheric connections (44)

are highlighted in yellow; and asymmetric interhemispheric connections (3) are highlighted in

blue. Also shown is the Euclidean distance between each pair of regional centroids; connections

that are stronger than anticipated by the distance between regions are highlighted in green. Note

that the partial correlation represents only the residual component of correlation between a pair

of regions that remains after ‘partialling out’ the contributions of all other 88 regions in the brain.
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Metric Multidimensional Scaling

The functional distances between regions in the healthy group

mean data were approximated by the graphical distances be-

tween them in the two-dimensional space of Figure 4: regions

that are functionally similar are plotted in close proximity. This

analysis confirms many of the organizational features already

highlighted: symmetrical regions are often paired in the same

neighbourhood of the space and the overall configuration

broadly respects anatomical relations between regions.

Superimposed on the MDS plot are lines corresponding to

the significant pairwise inter-regional partial correlations listed

in Table 2. This again highlights the predominance of local

intrahemispheric and symmetric interhemispheric connections.

Small World Properties

We thresholded the unihemispheric partial correlation matrix

of the healthy volunteers so that any partial correlation with P <

0.05 was represented by an edge between the corresponding

regional vertices (and all other possible edges were set to zero).

For this network, the clustering coefficient CP was 0.25 and the

mean minimum path length LP was 2.82. Corresponding param-

eters for a random graph with the same number of nodes

were: CP
random=0.12 and LP

random=2.58. In other words, local

clustering or cliquishness of connections in the brain network

was approximately two times greater than in the random net-

work, CP/CP
random=2.08, whereas path length between any two

brain regions was approximately the same as in the random

Figure 2. Dependency of functional connectivity on anatomical distance and frequency components of fMRI time series. Top panel: Plot of functional connectivity between regions
(healthy group mean partial correlation; y-axis) versus Euclidean distance (D, mm; x-axis) between regional centroids in Talairach space. Symmetric interhemispheric connections
are highlighted by red circles. Partial correlations generally decay as a function of increasing anatomical distance between regions; this relationship is described by the inverse
square law, r ~ 1/D2, fitted to the data (solid line). Green dashed lines represent the 5 and 95% quantiles for the mean partial correlations estimated in each 1 cm bin of the distance
distribution. Middle panel: Plot of inter-regional partial correlations versus Euclidean distance for the patient with brainstem ischaemia. Note that symmetrical connectivity is
relatively attenuated, compared to the healthy group, whereas the relationship between anatomical distance and short-range connectivity is preserved. Bottom panel: Plot of
healthy group mean partial correlations between regions subtended by high frequency components of the time series (y-axis) versus partial correlations subtended by low frequency
components (x-axis). The solid line is the line of identity, y5 x; symmetric interhemispheric connections are highlighted by red circles. Inter-regional connectivity consistently tends
to be stronger based on low-frequency components of the time series.
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network, LP/LP
random=1.09. This pattern of results is compatible

with a small world topology for the human brain functional

network.

Discussion

We expected whole human brain functional architecture to be

strongly conditioned by the anatomical relationships between

regions and our results clearly endorse this expectation. Cor-

relational and classical multivariate methods of analysis, applied

to these neurophysiological time series data without any

explicit incorporation of prior anatomical knowledge, consis-

tently demonstrated an anatomically sensible pattern of func-

tional organization. This is exemplified variously by the

approximately lobar and sub-lobar hierarchy of the dendrogram

(Fig. 3); the dorsal and ventral divergence of visual cortical

regions illustrated by MDS (Fig. 4) and predicted by prior

anatomical and functional neuroimaging studies (McIntosh

et al., 1994; Ungerleider and Haxby, 1994); and the inverse

square law relating anatomical distance to intrahemispheric

functional connectivity (Fig. 2). Anatomy did not always predict

precisely the functional relationships between regions: anterior

and posterior parts of cingulate cortex had weaker functional

connectivity than their anatomical contiguity might predict, and

several interhemispheric and left intrahemispheric pairs of

regions had stronger long-range connectivity than the distance

between them would predict; but in general functional con-

nectivity obeyed anatomical constraints.

Many of these results are compatible with prior studies of cat

or monkey cortical networks defined by multivariate analyses of

anatomical connectivity matrices. For example, Young (1992,

1993) used non-metric MDS to demonstrate dorsal and ventral

‘streams’ of inter-regional connectivity, a preponderance of

local neighbourhood connections, and a generally hierarchical

organization of primate visual cortex. Scannell et al. (1995,

1999) applied non-metric MDS, optimal set analysis and non-

parametric cluster analysis to whole brain connectivity matrices

derived from anatomical studies of the cat, and reported four

major hierarchically organized systems: visual, auditory, somato-

sensory/motor and frontal/limbic. Hilgetag et al. (2000) used

similar methods to demonstrate a broadly ventral--dorsal di-

chotomy of visual cortex, and a cluster comprising somatosen-

sory and motor cortices, by analysis of both cat and macaque

anatomical connectivity matrices.

Our data additionally highlight an aspect of functional

connectivity that has not been so clearly predicted by these

elegant analyses of anatomical connectivity, namely the import-

ance of bilaterally symmetric interhemispheric connections.

One reason for this discrepancy is simply that the anatomical

connectivity matrices on which multivariate analyses have

previously been based are unihemispheric, summarizing inter-

regional connections within a single (right or left) hemisphere.

Prior studies of resting state fMRI data have reported strong

correlations between diverse bilaterally homologous regions,

and demonstrated that interhemispheric functional connect-

ivity depends on the integrity of the corpus callosum (Lowe

et al., 1998; Quigley et al., 2003). Pioneering work by Horwitz

et al. (1984), using a partial correlational analysis of whole brain

positron emission tomography data on regional glucose metab-

olism, had previously demonstrated strong correlations be-

tween all bilaterally homologous regions. However, we believe

that our results provide the first confirmation by fMRI of

the ubiquity of symmetric inter-regional connectivity as an

Figure 3. Hierarchical cluster analysis of the healthy group mean partial correlation matrix. (A) Dendrogram illustrating hierarchical clustering of regions in six main groups
designated medial temporal, subcortical, occipital, frontal, temporal and parietal-(pre)motor. Symmetrical links between bilaterally homologous regions are consistently expressed
at the lowest level of the hierarchy. Intermediate levels of organization are indicated by broken-line boxes in each of the main clusters. (B) Anatomical maps of six main clusters
highlighting the decomposition of each cluster into component subsystems. The occipital/visual system is decomposed into dorsal (a) and ventral (b) subsystems, specialized
respectively for spatial and object processing; the frontal/executive system is decomposed into orbitofrontal (a), ventral prefrontal (b) and dorsomedial prefrontal/anterior cingulate
(c) subsystems; the (pre)motor-parietal system is decomposed into three subsystems corresponding to somatosensory and (pre)motor cortex (a), posterior cingulate and medial
posterior parietal cortex (b), and parietal association cortex (c); the lateral temporal/auditory-verbal system is decomposed into primary auditory cortex/insula (a) and temporal
association cortex (b); the medial temporal system is decomposed into temporal polar cortex (a) and medial temporal regions (b). The underlying grayscale image is the SPM/MNI
EPI template image.
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organizing principle of normal brain functional architecture;

and they highlight other long-range intrahemispheric connections,

e.g. between left prefrontal and inferior parietal cortices, that

are stronger than would be predicted by the anatomical

distance between regions. In a single patient, minimally con-

scious as a result of brainstem ischaemia, we have also shown

that relatively long-range, often symmetrical connectivity was

specifically attenuated, whereas short-range connectivity was

less affected and tended to fall off as an inverse square function

of anatomical distance in the same way as seen in the healthy

volunteers. These limited clinical data confirm previous reports

indicating that resting state connectivity may be a potentially

useful marker of brain disease or damage (Lowe et al., 1998;

Quigley et al., 2003); they also illustrate the feasibility of this

approach to measuring brain function in an individual patient

who would be unable to co-operate in a cognitively demanding

experiment. It will be interesting in future work to explore the

diagnostic and prognostic value of abnormal long-range func-

tional connectivity in patients with acute brain injury.

The existence of many strong connections between closely

neighbouring brain regions, taken together with evidence for

fewer, longer-range connections, raised the possibility that

human brain functional architecture might have ‘small world’

properties. Small world networks have been studied intensively

since the seminal work by Watts and Strogatz (1998) demon-

strated that random mutation of a few connections in a regular

or lattice network substantially reduced the mean minimum

path length between any pair of nodes while retaining strong

local connectivity or ‘cliquishness’. Small world properties have

been described for diverse social, biochemical, computational

and ecological networks; they are often associated with scale-

free topology, simple growth rules, economic wiring between

nodes and non-linear dynamics (see Strogatz, 2001, for a recent

review). The distinctive combination of high cliquishness and

short minimum path length has previously been shown for non-

human cortical networks derived from anatomical tract-tracing

studies (Hilgetag et al., 2000) and studies of seizure propagation

induced by direct cortical application of strychnine (Stephan

et al., 2000); synthetic graphs selected by the criterion of high

complexity of their dynamical behavior (Sporns et al., 2000,

2002); and graphs derived from measures of synchroniza-

tion between multiple (126) magnetoencephalography (MEG)

Figure 3. Continued
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channels of ‘resting’ human brain dynamics (Stam, 2004). Our

results demonstrate for the first time that such properties may

be characteristic also of large-scale human brain functional

networks derived from whole brain fMRI.

Our measure of ‘small worldness’ is essentially the difference

in the ratios CP/CP
random=2.08 and LP/LP

random=1.09. In other

words, the brain network is twice as cliquish as a random

network but has approximately the same short path length

between any two nodes as a random network. Hilgetag et al.

(2000) reported comparable results: for macaque visual cortex

CP/CP
random=1.85 and LP/LP

random=1.02; and for cat whole

cortex CP/CP
random=1.99 and LP/LP

random=1.07. However, it is

important to acknowledge that our absolute values for CP in the

brain functional network are somewhat small (0.25) compared

both to the limiting case of the perfectly regular network,

which has CP ~ 0.75, and the anatomical networks studied by

Hilgetag et al. (2000), which have CP ~ 0.6. Moreover, we found

empirically that both CP and LP converged quite rapidly with

their expected random values as the probability threshold for

significance of a partial correlation was relaxed (P > 0.05), or as

the number of participants in the sample (or the number of time

points in each fMRI time series) was reduced. In short, we think

it is likely that large-scale human brain functional networks

measured by fMRI have small world characteristics, but a more

conclusive and comprehensive investigation of this issue would

benefit from longer time series measured in more people. On

this basis it would be interesting also to explore the fMRI analog

of Stam’s (2004) observation in MEG data that small world

properties of human brain networks are more salient in

connectivity matrices derived from high- and low-frequency

band-pass filtered time series than in matrices derived from

intermediate frequency bands. Our wavelet decomposition of

the covariance between two regional time series (Fig. 2)

provides some preliminary evidence that fMRI connectivity

scales log-linearly with decreasing frequency of the time series

components subtending partial correlations between regions,

but this observation needs to be generalized to multiresolution

analysis of whole brain graphs based on longer fMRI time series.

Another important methodological consideration is the issue

of anatomical parcellation. One key general advantage of par-

cellating fMRI datasets prior to multivariate analysis is that it is

necessary to have the number of anatomical loci smaller than

the number of time points, i.e. m < t, for inversion of the inter-

regional covariance matrix to estimate the partial correlation

matrix. This would be impossible to achieve, without excep-

tionally long scan times, if each voxel was treated as a separate

locus. Regional averaging of time series also effects a degree of

denoising and ensures that anatomical labelling is defined

Figure 4. Multidimensional scaling (MDS) solution for healthy group mean partial correlation matrix. The axes of the two-dimensional MDS solution have been labelled ‘anterior-
posterior’ (x-axis) and ‘inferomedial-superolateral’ (y-axis) to acknowledge the anatomical constraints on functional configuration of the regions. Regions are color-coded according
to their membership of the six main systems identified by hierarchical cluster analysis and lines between them are drawn to indicate statistically significant inter-regional partial
correlation coefficients (see also Table 2).
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according to some standard, previously validated template

incorporating expert neuroanatomical knowledge. However,

there are many different schemes for anatomical parcellation

and the template we have adopted (Tzourio-Mazoyer et al.,

2002) is not the only one available for this purpose. Future

studies of whole brain functional connectivity might usefully

explore the impact of different parcellation schemes on

neurophysiological architecture. It will be useful also to explore

the impact of other pre-processing steps that may be implicit in

anatomical parcellation, such as the effects on spatial covariance

between neighbouring time series caused by interpolation and

realignment of the observed time series volume to match

a parcellated template image in standard space.

Can our results be explained in terms of nuisance sources of

inter-regional covariance such as head movement or cardiore-

spiratory cycle-related pulsation? It may seem unlikely a priori

that a global factor such as head movement could generate a set

of regionally specific connectivities that conform to local

anatomical relationships. And our use of the partial correlation,

rather than Pearson’s correlation, as a measure of functional

connectivity will have attenuated the contribution of global

sources of covariance to the functional connectivity between

any pair of regions. Moreover, we have used a standard tech-

nique to correct head movement by co-registering each image

volume with the first volume in each experimental series. We

have also explored the impact of more draconian corrections

for head movement, e.g. regressing the co-registered fMRI time

series on the time series of estimated translations and rotations

of the image center of gravity, and found that this did not make

a major difference to the functional configurations demon-

strated by MDS or hierarchical cluster analysis (data not shown).

As noted earlier, the most successful approach to eliminate the

possible effects of cardiac and respiratory cycles on functional

connectivity has been to acquire images at high frequencies (TR
< 1 s) and low-pass filter the resulting time series to isolate low-

frequency components (subtending functional connectivity)

from the higher-frequency peaks at cardiac and respiratory

cycle frequencies (Cordes et al., 2001, 2002; Rombouts et al.,

2003). We did not seek to emulate this experimental approach

because, at least using the MR system available to us locally, such

rapid sampling implies loss of anatomical coverage and we

wished to consider the functional architecture of the whole

brain rather than just a few slices of it.

However, we suggest that our results linking functional

connectivity in no-task fMRI data to human anatomical con-

straints, and the affirmative evaluation of these results in relation

to prior studies of non-human anatomical connectivity, strongly

implies that there are neurobiological mechanisms underpin-

ning ‘resting’ state connectivity in human fMRI. We have

replicated the prior observation that these connections are pre-

dominantly subtended by low-frequency components of the

time series, and this was especially true of long-distance

interhemispheric and left intrahemispheric connections that

are presumably mediated by the corpus callosum and other

major white matter tracts. In keeping with this interpretation, it

has been shown that callosal agenesis is asssociated with loss of

functional connectivity between contralaterally homologous

regions of sensorimotor and auditory cortex (Quigley et al.,

2003). There is also supportive anatomical data from non-human

primate studies, e.g. demonstrating symmetry of striatal projec-

tions from left and right prefrontal and premotor regions and

between left and right premotor regions (McGuire et al.,

1991a,b). Alternative anatomical substrates for co-ordinating

activity between bilaterally homologous regions are the ascend-

ing arousal systems (Robbins and Everitt, 1995). Changing levels

of noradrenergic, serotonergic, cholinergic and dopaminergic

input from ascending arousal systems could result in varying

degrees of local neural activation and coupled cerebral blood

flow(CBF) change, or affect regionalCBFdirectly throughneuro-

transmitter release in the microvasculature. The distribution of

post-synaptic neurotransmitter receptors that serve such sys-

tems is not uniform (Zilles et al., 2002), and it is possible that the

summed effect of varying levels of individual arousal systemsmay

have varying effects on different parts of the brain. However, it is

highly likely that these effects would be symmetrical, thus

explaining the interhemispheric connectivity seen. The absence

of symmetrical connectivity demonstrated in data acquired from

a patient with brainstem ischaemia is arguably compatible with

a role for ascending transmitter systems in maintaining coherent

low-frequency oscillations in bilaterally homologous cortical

regions.

Conclusions

Functional MRI demonstrates a neurophysiological architecture

of the human brain that is anatomically sensible, strongly

symmetrical, subtended predominantly by low-frequency time

series components and compatible with an underlying small

world topology. Further work is needed to define the generative

mechanisms of this architecture, to explore its scaling behavior,

and to assess its utility as a marker of state changes in brain

function due, for example, to drugs or diseases.
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