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Three-Dimensional Graph Drawing1

R. F. Cohen,2 P. Eades,2 Tao Lin,3 and F. Ruskey4

Abstract. Graph drawing research has been mostly oriented toward two-dimensional drawings. This paper
describes an investigation of fundamental aspects of three-dimensional graph drawing. In particular we give
three results concerning the space required for three-dimensional drawings.

We show how to produce a grid drawing of an arbitraryn-vertex graph with all vertices located at integer
grid points, in ann × 2n × 2n grid, such that no pair of edges cross. This grid size is optimal to within a
constant. We also show how to convert an orthogonal two-dimensional drawing in anH × V integer grid to a
three-dimensional drawing withd√He×d√He×V volume. Using this technique we show, for example, that
three-dimensional drawings of binary trees can be computed with volumed√ne × d√ne × dlogne. We give
an algorithm for producing drawings of rooted trees in which thez-coordinate of a node represents the depth
of the node in the tree; our algorithm minimizes thefootprint of the drawing, that is, the size of the projection
in thexy plane.

Finally, we list significant unsolved problems in algorithms for three-dimensional graph drawing.
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1. Introduction. Recent hardware advances have promised to bring the cost of three-
dimensional interfaces low enough to make them widely available, and initial research
into three-dimensional applications has begun [11], [17], [13], [20], [7]. However, as yet
this work has been done mainly by software engineers who use experimentation rather
than mathematical proof to establish the effectiveness of their techniques. For example,
very little fundamental work has been done to understand the bounds on the volume
used when drawing graphs in three dimensions. This paper presents some elementary
but fundamental mathematical results for three-dimensional graph drawing.

The sizeof a grid drawing can be measured in various ways; for two-dimensional
drawings the most common measure is theareaof the drawing [4], [1], [2], [9]. However,
for visualization systems, the most relevant measure is the maximum distance which the
drawing extends in each dimension. To define this notion more precisely, suppose that
S is a set of points in three-dimensional space. Therectangular hullof S is the smallest
rectangular prism (with sides parallel to the coordinate axis) which contains all ofS. If the
set of vertex positions in a three-dimensional graph drawingD is S, and the rectangular
hull of S has dimensionsX × Y × Z, then thesizeof D is the maximum ofX, Y,
andZ.
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A Fary drawing is a straight-line drawings with no edge crossings. This paper is
concerned with bounds on the size of three-dimensional Fary grid drawings.

The next section proves upper and lower size bounds for three-dimensional Fary
grid drawings of general graphs. Section 3 gives a size-efficient technique to convert a
planar orthogonal grid drawing to a three-dimensional Fary grid drawing. Thefootprint
algorithm is described in Section 4; this is an efficient algorithm for producing three-
dimensional drawings of rooted trees with a smallfootprint, that is, a small projection
in the xy plane. In the final section we list some fundamental unsolved problems for
three-dimensional graph drawing.

2. Three-Dimensional Grid Fary Drawings. In this section we show how to produce
a three-dimensional Fary grid drawing of any graph. Our drawing of a graph withn
vertices fits into ann×2n×2n grid. This significantly reduces the previous best known
upper bound for this problem ofn× n2× n3 (G. Di Battista, private communication).

We achieve this volume bound by providing for eachn auniversal setof grid points
Un = {p1, . . . , pn}; this set has the property that any four distinct pointspi , pj , pk, and
pl are not coplanar. Our drawing algorithm simply places each vertexvi at point pi .
Since an edge crossing requires four coplanar points, the output is a Fary drawing. The
setUn is universalin the sense thatUn depends only on the number of verticesn and not
on the graph itself.

The choice ofUn is motivated by some elementary mathematics. Themoment curve
M is a three-dimensional curve defined by the parameters

M(t) = (t, t2, t3).

It is not difficult to prove that the moment curve has the property that distinct chords can
only intersect endpoints. That is, given four distinct pointsp1, p2, p3, andp4 on M , the
segmentsp1 p2 and p3 p4 do not intersect. Therefore, given a graphG with n vertices,
we can obtain a three-dimensional Fary grid drawing ofG by placing each vertexvi at
M(i ). This drawing uses volumen × n2 × n3; such a drawing is very sparse and has
poor resolution on a screen.

However, we improve this upper bound using the following simple algorithm:

Algorithm 1. 3-D DRAW

Input: A graphG with n vertices
Output: A 3-D drawing ofG

1. Choose a primep with n < p ≤ 2n
2. for i = 1 to n do placevi at point pi = (i, i 2 modp, i 3 modp)

THEOREM1. Algorithm1 gives a three-dimensional Fary grid drawing of an n vertex
graph in n× 2n× 2n volume in O(n) time.

Proof. Note that Step 1 can be implemented in linear time using a simple prime
number sieve [22]. Thus the algorithm takes linear time.
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Given a vectorx = (x1, . . . , xr ), the Vandermondematrix V(x) of x is an r × r
matrix whosei j th entry isxi

j . The determinant ofV(x) has a special form [10]:

|V(x)| =
∏

1≤ j≤r

xj

∏
1≤i< j≤r

(xj − xi ).

Note that this determinant is 0 if and only if eitherxj = 0 for somej , or there is a pair
i, j of distinct indices for whichxi = xj .

Suppose thatp is a prime greater than each of four integersi, j, k, l . Consider the
following Vandermonde-like determinant:

1 =

∣∣∣∣∣∣∣∣
1 1 1 1
i j k l

i 2 modp j2 modp k2 modp `2 modp
i 3 modp j3 modp k3 modp `3 modp

∣∣∣∣∣∣∣∣ .
Note that the pointspi , pj , pk, pl are coplanar if and only if1 = 0[8]. Since(a +
b)modp = (a modp+bmodp)modp and(ab)modp = (a modp)(bmodp)modp
we can deduce that

1modp =

∣∣∣∣∣∣∣∣
1 1 1 1
i j k `

i 2 j 2 k2 `2

i 3 j 3 k3 `3

∣∣∣∣∣∣∣∣ modp,

and using simple arithmetic noting the similarity with the Vandermonde determinant we
can deduce that

1modp = (`− k)(`− j )(`− i )(k− j )(k− i )( j − i )modp,

and thus1 6= 0, sincei, j, k, ` are distinct andi, j, k, ` < p. If follows that the points
pi , pj , pk, pl in Algorithm 1 are not coplanar. 2

We can show further that, apart from a constant, no general drawing algorithm can
achieve smaller size.

THEOREM2. Suppose thatD is a three-dimensional Fary grid drawing of the complete
graph G on n vertices, andD uses volume X× Y × Z. Then each of X,Y, Z isÄ(n).

Proof. Suppose thatX ≤ n/5. Consider the planes parallel to theyz plane which
intersect the drawing ofG. At least one such plane must contain at least five vertices;
sinceG is complete, the subgraph on these five vertices is complete, and thus is not
planar [3]. ThusX > n/5; a similar argument applies toY andZ. 2

Note that although Algorithm 1 is useful in establishing the theoretical limits for
general three-dimensional graph drawing, it is not a very practical algorithm because it
is insensitive to the particular graph being drawn. Specific classes of graphs, in fact, can
be drawn in size less than that achieved by Algorithm 1; the next section describes such
a technique.
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Fig. 1.Serpentine rollup.

3. Converting Orthogonal Grid Drawings to Three Dimensions. This section de-
scribes a general technique for converting a two-dimensional orthogonal grid drawing to
a three-dimensional Fary drawing. Conceptually, the technique is quite simple: we just
“roll up” the two-dimensional page. For specific classes of graphs, this technique gives
a better size bound than the technique of the previous section.

For a positive integerr , theserpentine rollupσr maps the two-dimensional grid into
the three-dimensional grid such that, forx, y ≥ 0,

σr (x, y) =
{
(x div r, y, x modr ) if x div r is even,
(x div r, y, x(r − x − 1)modr if x div r is odd,

wherex div r = bx/r c.
Note that they-coordinate remains unchanged while thex-coordinate is “rolled-up”

into thexzplane (see Figure 1).
The following lemmas follow directly from the definition ofσr :

LEMMA 1. If σr (x1, y1) = σr (x2, y2), then x1 = x2 and y1 = y2.

LEMMA 2. Suppose that p1 = (x1, y1) and p2 = (x2, y2) are grid points with x1 < x2.
Then either

(a) x (σr (p1)) < x (σr (p2)), or
(b) x (σr (p1)) = x (σr (p2)) and z(σr (p1)) 6= z(σr (p2)).

LEMMA 3. Suppose that p1 = (x1, y1), p2 = (x2, y2), and p3 = (x3, y3) are grid
points with x1 < x2 < x3 and x(σr (p1)) = x (σr (p2)) = x (σr (p3)). Then either

(a) z(σr (p1)) < z(σr (p2)) < z(σr (p3)), or
(b) z(σr (p1)) > z(σr (p2)) > z(σr (p3)).

Note that Lemma 1 implies that the inverse mappingσ−1
r (x, y, z) is defined forx ≥ 0,

y ≥ 0, and 0≤ z< r .
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Fig. 2.The mapping toD3 of horizontal edges.

SupposeD is a two-dimensional orthogonal drawing of a planar graphG. We assume
thatD has no edge bends since we can replace a bend with a dummy vertex. We produce
a three-dimensional grid drawingD3 of G by using the serpentine rollup, as follows. If
vertexv is drawn at pointp in D, then we placev atσr (v) in D3. We then draw edges
as straight line segments. Figure 2 illustrates the mapping from two horizontal edges in
two dimensions to two edges in three dimensions.

LEMMA 4. There are no edge crossings inD3.

Proof. Consider distinct edgese= (v1, v2) and f = (v3, v4) in G. Let (xi , yi ) be the
coordinates of the drawing of vertexvi in D. We show that the drawings ofe and f do
not cross inD3.

We proceed by case analysis. Suppose in the drawingD:

• Edges e and f are drawn vertically. In this casex1 = x2 andx3 = x4. If x1 6= x3, then,
by Lemma 2,x (σr (x1, y1)) = x (σr (x2, y2)) 6= x (σr (x3, y3)) = x (σr (x4, y4)) and
so the edges do not cross. Ifx1 = x3, then we can assume without loss of generality
that y1 < y2 ≤ y3 < y4. Then the lemma holds since the mappingσr does not alter
the y-coordinate of a point.
• Edge e is drawn vertically and edge f is drawn horizontally. Here x1 = x2 and

y3 = y4. Suppose edgese and f cross in drawingD3 but not in drawingD. In D3,
edgee is contained in the line defined byx = x (σr (x1, y1)) , z = z(σr (x1, y1)) and
edge f is contained in the plane defined byy = y (σr (x3, y3)) = y3. Therefore, the
crossing must be atp = (x (σr (x1, y1)) , y3, z(σr (x1, y1))). Then by Lemma 1, point
σ−1

r (p) must be in both the drawings ofe and f in D, and is hence a crossing.
• Edges e and f are drawn horizontally. In this casey1 = y2 andy3 = y4. A crossing is

possible inD3 only if edgeseand f are drawn with the samey-coordinatey1 = y2 =
y3 = y4. Assume without loss of generality thatx1 < x2 ≤ x3 < x4. An edge crossing
is not possible by the monotonicity ofσr along the rollup described by Lemmas 2
and 3. 2

From this lemma we can deduce the major property of the serpentine rollup transfor-
mation below.

THEOREM3. Suppose G is a planar graph andD is an orthogonal drawing of G with b
bends using h×w area. Then for any integer r, 1≤ r ≤ w, there is a three-dimensional
grid drawing of G with b bends using r× h× dw/r e volume.
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Fig. 3.An orthogonal grid drawing.

Thus two-dimensional orthogonal drawings can be efficiently “rolled up” to produce
efficient three-dimensional Fary drawings. For instance, in [4] an algorithm is given for
constructing an orthogonal grid drawing of a binary tree in an area ofn × log(n); we
can deduce the following:

COROLLARY 1. A three-dimensional Fary grid drawing of a binary tree with n nodes
can be constructed in O(n) time using

√
n×√n× log(n) volume.

As another example, an orthogonal drawing of a planar graph with maximum degree 4
(as in Figure 3) can be constructed in ann× n grid, with 2n+ 4 bends and using linear
time (see [15]). Thus we can deduce:

COROLLARY 2. A three-dimensional grid drawing of a planar graph with maximum
degree4 and n nodes can be constructed in linear time using n×√n×√n volume and
having O(n) total edge bends.

4. The Minimum Footprint Algorithm. In this section we discuss three-dimensional
grid drawings of rooted trees. We use the convention that thez-coordinate of a vertex is
chosen to indicate its depth in the tree: the root hasz-coordinateh, whereh is the height
of the whole tree, and a vertex of depthd hasz-coordinateh − d. In other words, the
vertices are placed inlayers, where a layer is a planez= h− d containing the vertices
of depthd. the edges are drawn as orthogonal polylines with two bends. Siblings are
drawn on horizontal lines parallel to either thex- or they-axis. These three-dimensional
conventions are a direct generalization of common two-dimensional paradigms; two such
drawings, one in two dimensions and one in three dimensions, are given in Figures 4
and 5.
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Fig. 4.A rooted tree in two dimensions.

We further require that subtrees areseparatedin the following sense. Suppose that
u andv are two vertices in a tree drawing and neither is an ancestor of the other. Then
we require that the rectangular hulls of the subtrees underu andv be disjoint. This
requirement ensures that the subtrees are visually separated and, in applications such as
browsing directory trees, assist navigation.

The above convention for three-dimensional tree drawing is called theclassicalcon-
vention, following the two-dimensional terminology of [6].

Note that the classical convention fixes thez-coordinate of each vertex in the drawing.

Fig. 5.A rooted tree in three dimensions.
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Fig. 6.A rooted tree in three dimensions.

The footprint of the drawing is the projection of the drawing onto thexy plane. If the
rectangular hull of the footprint has dimensionsX × Y, then thesizeof the footprint is
the maximum ofX andY.

The three-dimensional problem of drawing with a minimum-size footprint in three
dimensions is the natural analogue to the well-studied problem of minimization of the
width of a drawing in two dimensions (see [14], [21], [18], [19], [9], and [12]).

Note that according to the classical convention, the footprints of two disjoint subtrees
must be disjoint. Further, ifu has childrenv andw, then the footprint of the subtree
underu is the rectangular hull of the union of the footprints of the subtrees underv and
w. Thus thexyplane projection of a three-dimensional layout in the classical convention
forms aninclusion conventiondrawing of the tree according to the terminology of [6].
For example, the techniques of [6] apply, and using the dynamic programming method
of [5] we can deduce:

THEOREM4. A minimum footprint layout of a binary tree with n nodes can be found
in time O(n2).

We believe that the combination of the algorithmic techniques of [5] and the three-
dimensional classical convention give a practical approach to drawing trees in three
dimensions. Samples of three-dimensional classical convention drawings are shown in
Figures 5 and 6.

5. Conclusions and Open Problems. In this paper we have demonstrated some initial
results of an investigation of the fundamental algorithmic problems involved in drawing
graphs in three dimensions. We believe that the results of Sections 2 and 3 are useful
in defining the theoretical performance limits of layout algorithms in three dimensions.
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The algorithm is Section 4 is a practical technique for drawing rooted trees in three
dimensions.

However, the number of unanswered fundamental problems is quite large. Here we
list a sample.

1. Is it possible to improve the lower bounds in this paper? In particular:
(a) In our three-dimensional Fary grid drawing algorithm we find a collection of

points with no four points coplanar. However, when drawing a complete graph,
edge crossings can be avoided if any four coplanar points are arranged such that
one point is interior to the convex hull of the remaining three. Is it possible to
obtain an algorithm which uses this weaker condition? Is it possible to improve
on Theorem 1? Is it possible to obtain a Fary drawing of a complete graph onn
vertices in volumen× n× n?

(b) Is it possible to obtain a Fary drawing of a binary tree withn nodes in volume
X × Y × Z where each ofX,Y, Z is O

(
3
√

n
)
?

(c) Is it possible to draw a tree of depthd with n vertices in the classical convention
with footprint areaO(nd)?

2. Find algorithms and lower bounds for three-dimensional Fary grid drawings of planar
graphs. Are there planar graphs which require volumeX×Y×Z where the maximum
of X,Y, Z isÄ(n)? Note every planar graph can be drawn as the vertices and edges of
a three-dimensional convex polyhedron [16]. Is it possible to obtain such a drawing
with volumeO(n)× O(n)× O(n)?

3. There has been a great deal of investigation of the problem of drawing a bipartite graph
so that each part lies on a horizontal line. The corresponding problem of drawing a
bipartite graph so that each part lies on a horizontal plane has not been investigated. It
is not difficult to establish that to avoid crossings,Kmn requires areaÄ(mn). However,
no further results have been obtained.
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