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A Digital Architecture Employing 
Stochasticism for the Simulation 

of Hopfield Neural Nets 
DAVID E. VAN DEN BOUT AND THOMAS K. MILLER I11 

Abstruct -A digital architecture which uses stochastic logic for simulat- 
ing the behavior of Hopfield neural networks is described. This stochastic 
architecture provides mussiw paruf/e/ism (since stochastic logic is very 
space efficient), reprogrammability (since synaptic weights are stored in 
digital shift registers), large dynumic runge (by using either fixed or 
floating-point weights), unneuling (by coupling variable neuron gains with 
noise from stochastic arithmetic), high execution speecLF ( = N.108 connec- 
tions per second), expMdability (by cascading of multiple chips to host 
large networks), and practiculity (by building with very conservative MOS 
device technologies). Results of simulations are given which show the 
stochastic architecture gives results similar to those found using standard 
analog neural networks or simulated annealing. 

I. INTRODUCTION 
RTIFICIAL neural networks are a family of mas- A sively parallel architectures that solve difficult prob- 

lems via the cooperation of highly interconnected but 
simple computing elements. The speed and solution qual- 
ity obtained when using neural networks for solving spe- 
cific problems in visual perception [2] and dynamic control 
[ 51 make specialized neural network implementations at- 
tractive. For instance, the Hopfield network of Fig. 1 can 
be used as an associative memory [ll] or for solving 
various combinatorial problems [9] by the programming of 
synaptic weights stored as a conductance matrix. 

Analog implementations of the Hopfield network con- 
taining up to 512 neurons have been built with matrices of 
fixed resistors and nonlinear amplifiers fabricated on a 
single chip [8]. Variable resistors are needed in order to 
change the problem constraints, but the increased com- 
plexity of such interconnections reduces by an order of 
magnitude the number of neurons that can be built on a 
c h p  [14], [18], [16]. Real-world applications will require 
many more neurons than this, so finding a method of 
interconnecting these chips to form larger networks will be 
a primary concern. This task is made difficult by the large 
number of analog signals which must pass between chips 
and by the external parasitic capacitances which will dis- 
tort the charging characteristics of the network and possi- 
bly cause erroneous results. 

The limitations of analog computing have led re- 
searchers of neural networks to rely upon digital simula- 
tion. The Hopfield network minimizes objective functions 
of the form 

1 N - 1  N - 1  N - 1  

E = - -  E E G U, uJ + IJ U, where G, , = G,, 

and will converge to a stable solution if dE/dt < 0. This 
can be rewritten as 

J = o  I # J  J - 0  

dE N - l  J E  du du 
dt J = o  duJ du, dt 
_ -  - E - . J . J < O  

which can be guaranteed if dvJ/duJ > 0 and aE/auJ = 
- du,/dt. The first condition is satisfied by using any 
strictly increasing transfer function relating uJ to U,. The 
second condition is satisfied by making 

du, _-  - E G j j u j + Z , - u J ( t + A t )  
dt i # j  

' J ( ' ) . (  ' 2 1  E c i , u i ( t ) + z J } ' A t  

(1) 

which resembles the Hopfield network charging equation 
minus the capacitive decay current. The current source 
term, I,, can also be absorbed into the summation by 
adding a constant bias neuron (i.e., uB =1) that charges 
each neuron j through a conductance of G, = ZJ. Single- 
chip digital signal processors (DSP's) excel at inner prod- 
uct computations such as those in (1) and have been used 
to build neural network archtectures [17]. Since most 
DSP's contain only one hardware multiplier, a large and 
expensive system employing hundreds of DSP chips would 
be needed in order to utilize all the potential parallelism 
available in a neural network. 

Stochastic systems [6] use binary signals whch randomly 
assume either the value 0 or 1. The average of a stochastic 
signal can be viewed as an analog value in the range [0,1] 

function (PDF) of the signal. Neural networks built from 
stochastic logic elements [7,15] avoid the problems of the 
preceding implementations and have the following advan- 
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Fig. 1. A Hopfield neural network. 
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Fig. 2. An example of stochastic multiplication 

tages: 

1) Pseudoanalog computations are easily performed on 
stochastic signals using very space-efficient digital 
logic. For instance, stochastic signals can be multi- 
plied using only a simple AND gate (Fig. 2), and 
capacitors can be emulated using digital counters. 

2) The simplicity and small size of stochastic circuitry 
permits massive parallelism. 

3) Digital stochastic signals are more easily passed be- 
tween chips and suffer less from noise and parasitic 
capacitance than analog signals. 

11. A SIMPLE STOCHASTIC ARCHITECTURE: 
THEORY OF OPERATION 

A stochastic neural network archtecture [4]  will now be 
presented which distributes the summation in (1) over N 
time slices [ l ]  of length 61. During time slice n (0 G n < CO), 

the output of amplifier i = n mod N is used to send charge 
to all the capacitors. The charging equation for U, in this 
altered network is 

U, ( n  6t + s t )  = U,( n s t )  + G,,u, ( n  s t )  at ,  

with i = n mod N .  (2) 
This expression behaves similarly to (1) as long as the time 
slices are much smaller than the main integration period 
(i.e., 6t  << A t )  so that the capacitor voltages do not change 

too much during a time slice. No deleterious effects caused 
by this time-multiplexing have been noted in any of our 
experiments. 

Fig. 3 shows the translation of the above idea into a 
small, all-digital, stochastic neural architecture containing 
four neurons ( N  = 4). On the right hand side of the figure 
are four counters which are connected as a circular shift 
register. The counters contain the neural state vector ar- 
ranged such that the j t h  counter initially contains the j t h  
component of the state vector, U,. The 16 synaptic conduc- 
tance coefficients are stored in four circular shift regsters 
such that the ith cell of the j t h  circular shift register 
initially contains G,,,, +J)mod ,,,,. 

Once initialized, the contents of counters CO, C,, . . . , 
C,-, are continuously rotated such that counter CJ con- 
tains u ( , + ~ ) , ~ , , , ,  at clock cycle n .  Simultaneously, the 
synaptic shft  registers are also continuously rotated such 
that the output of the j t h  shift register is G,,modN,(n+J)modN. 
Thus the neural firing signal derived from the output of CO 
(which contains u n m o d N )  arrives at the same time as the 
weights through which it influences the other neurons 
(Fig. 4) .  

Stochastic arithmetic is now used to compute the com- 
ponent of charge to be added to each simulated neural 
capacitor. During each clock cycle, the output of counter 
CO, U,, is compared with a random number, R, ,  uniformly 
distributed over [R,,, R m J .  The output of the compara- 
tor will pulse if R, < U,, thus creating a stochastic neural 
firing signal U ,  whose mean is proportional to U, provided 
U ,  E [R, , ,  Rma] .  If U ,  is outside this range, the mean will 
saturate at either 0 or 1, providing the needed nonlinearity 
in the network amplifiers. Similarly, the outputs of the N 
synaptic shft  registers are compared to another uniformly 
distributed random number, R , ,  to provide N stochastic 
signals with means proportional to the corresponding 
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Fig. 3. The stochastic neural network archtecture at cycle n = kN. 
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Fig. 4. The flow of data in the stochastic architecture. 

synaptic weights. ANDing the neural firing signal with each 
synaptic weight signal creates a third set of stochastic 
signals that pulse with probabilities of lG,,u,l. A pulse 
from an AND gate will cause the connected counter to 
either increment or decrement U, depending upon the sign 
of GI,. So the charging equation for this network is 

U, ( n  + 1) = U,( n) + G,,u, ( n )  with i = n mod N 

which is the same as (2). 
A fully parallel neural network of N neurons can pro- 

cess all N 2  connections in a single cycle, while the 

pipeline-ring arclutecture described above requires N clock 
cycles due to its time-multiplexed nature. The advantage, 
however, is that each neuron is connected to the rest of the 
system by only the following signals: two buses for input- 
ing and outputing counter values, a bus for receiving 
random number R,, and a single wire which carries the 
neural firing signal. If the synaptic weight shift registers 
are built to hold kN, coefficients, where N, is the number 
of artificial neurons per chip and k is an integer, then it 
becomes possible to cascade k chips and construct much 
larger networks without an increase in the number of 1/0 
pins (Fig. 5). 

The use of random numbers also confers significant 
advantages. For example, the neural firing comparator 
pulses only when R, < U and thus has a mean output 
voltage of 

( U )  = l . P r {  R, < U ]  +O.Pr{ R, 2 U ]  = Pr{ R, < U ] ,  

which is the definition of the cumulative distribution func- 
tion (CDF) of R,. Therefore, the neural transfer function 
can be altered by adjusting the PDF of R, (Fig. 6). Wlule 
a uniform PDF gives a linear transfer function with hard 
limits, a PDF of 
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Fig. 6 .  Altering the PDF of RI  to get different neural transfer charac- 
teristics. 

gives the more familiar sigmoidal transfer characteristic 
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Fig. 7. Encoding synaptic weights and computing the PDF for R ,  
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Fig. 8. Analog and stochastic neuron outputs for the A/D problem. 

Also, tightening the interval over which R, ranges effec- 
tively increases the gain of the amplifier. If the capacitive 
decay current is also simulated, this permits the stochastic 
architecture to do annealing since increasing the gain acts 
in a manner analogous to lowering the temperature in the 
simulated annealing process [9]. 

The PDF for R ,  can also be altered to more efficiently 
encode a set of synaptic weights. Assuming the stochastic 
signal generated by the largest synaptic weight, g M ,  should 
pulse with a probability of 1, then a weight gk should 

generate pulses with a probability of gk/gM. The follow- 
ing procedure constructs a discrete PDF for R ,  based on 
the differences between these probabilities: 

1) Arrange the absolute values of all the synaptic weights 
plus a weight of zero into ascending order and elimi- 
nate all duplicate entries to create a list G* = 

(0 ,  g, , .  * * ,  gM} .  
2) Encode each of the synaptic weights by its position 

within the sorted list plus an additional sign bit. 
3) Create a discrete PDF for R ,  where, 

gk+l gk 
gM 

, f o r O g k < M  

otherwise. 

The use of t h s  algorithm to encode floating-point synaptic 
weights with 2-bit mantissas and exponents is illustrated in 
Fig. 7. Note that the interpretation of the encoding is a 
function of the PDF of R ,  alone-the circuitry need not 
be changed in order to support floating-point weights! 

111. SIMULATION RESULTS 
Fig. 8 compares the evolution of the neural state vector 

in the stochastic network to that of an analog Hopfield 
network when both networks are programmed to act as 
analog-to-digital converters [lo] and are given an input 
voltage corresponding to a digital code of 011. As can be 
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seen, the state vectors evolve similarly except for the 
natural addition of some noise in the stochastic version. 
The speed of convergence and flexibility of programming 
for this problem on several architectures is shown in Table 
I. The stochastic architecture offers a good compromise 
between the high speed of dedicated analog VLSI net- 
works and the flexibility of a general-purpose computer. 

As a second test, the stochastic architecture was used to 
divide a graph containing N nodes into two subgraphs 
containing = N / 2  nodes while cutting as few edges as 
possible. Solving such a bipartitioning problem [12] in- 
volves minimizing the objective function 

N - 1  N - 1  

E =  E i , ( l - ~ j ) ~ i - ~  ( l - u , ) u i  
i = O  j # i  i = O  j Z i  

where the variables have been defined so that ui = 0 if the 
node i is in the first subgraph and ui =1 otherwise. Indi- 
vidual nodes i and j are attracted into the same subgraph 
by edges of strength Ei j  while clustering is discouraged by 
the amorphous repulsive force, r .  One hundred bipartition- 
ings of an arbitrary graph containing 84 nodes and 115 
unit-weight edges were done using both the stochastic 
architecture and simulated annealing [3]. Solutions found 
using simulated annealing had an average of 3.07 cut edges 
while 5.85 cut edges existed in solutions generated by the 
stochastic architecture (a randomly generated solution 
would contain 57.5 cut edges, on average). However, simu- 
lated annealing required an average of 329 seconds to 
converge to a solution versus just 4 . 2 X 1 0 - 3  s for the 
stochastic architecture. Obviously, a dedicated analog VLSI 
network would be even faster (just as it was in the previous 
example), but no hard data is available. 

A comparison of the stochastic architecture to other 
neural network implementations [13] is given in Fig. 9 in 
terms of the storage capacity and processing speed (in 
connections/second). In general, a stochastic architecture 
of N neurons will have storage for N 2  synaptic weights 
and will process connections at a rate of N X f,, where f, 
is the system clock speed. Even at a modest 10 MHz, the 
stochastic architecture outperforms the other implementa- 
tions. 

IV. IMPLEMENTATION ISSUES 
The stochastic system shown in Figs. 3 and 5 is plagued 

by signal propagation delays (when transmitting U and R ,  
to each artificial neuron) and computational delays (caused 
by the cascaded comparison, logical AND, and increment/ 
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A comparison of various neural network implementations. Fig. 9. 

decrement operations). The R ,  propagation delay can be 
eliminated once it is realized that each neuron does not 
have to receive the same random number, only one which 
has the same characteristics, i.e., the same PDF. Thus 
multiple random number generators with the same PDF 
could be placed on the circuit board to minimize the 
wiring length to each chip. Internal to each chip, inter- 
spersed pipeline registers along the R ,  bus ( R , , ,  R 2 1 ,  R, , ,  
and R,, in Fig. 10) increase the system speed by reducing 
the wire length which must be driven during a clock cycle 
whle still allowing each neuron to receive random num- 
bers with the same probability distributions. Pipeline de- 
lays can also be introduced on the neural firing signal wire, 
but the counting and shifting operations of the neural state 
registers must be separated in order to maintain correct 
operation. (This exacts a very small penalty since the chip 
area is dominated by the shift registers which store the 
synaptic weights.) During operation, the neural state vec- 
tor stored in the counters is transferred into the shift 
registers and is then shifted out to create the neural firing 
signal. The result of each neuron firing passes through the 
delay line and updates each neural state counter. Once the 
shift register has been emptied, the new neural state is 
transferred into the shift register and the process begins 
again. 

The computational delay can be significantly reduced by 
using bit-level pipelining in the comparator and incre- 
ment/decrement circuitry. By skewing the storage of the 
sign bit and p magnitude bits of each weight G,,  = sigi ,  
. . gi lgrO,  then the comparison with R ,  can be done by a 
series of single-bit comparators. Single-bit registers exist 
between each comparator stage to store the intermediate 
borrow bits between cycles, which permits the processing 
of p comparisons simultaneously. The final borrow output 
is ANDed with the firing signal from neuron i and the 
result is used along with the sign bit to control a bit-level 
pipelined counter. (Additional logic prevents the counter 
from overflowing or underflowing during the charge inte- 
gration process.) The computational delay is now deter- 
mined solely by the time required to do 1-bit arithmetic. 
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Fig. 10. Adding registers to create pipelining. 

The combination of the changes described above with a 
modem silicon process should allow system clock speeds 
of 50-100 MHz. 

cated. A more advanced version is being designed whch 
accesses synaptic weights stored in external RAM’S and is 
capable of learning by dynamically adjusting these weights. 

V. CONCLUSIONS AND FURTHER WORK 
A neural network implementation based upon stochastic 

arithmetic has been described. This stochastic archtecture 
is dynamically reprogrammable, is easily expanded using 
multiple chips, and uses a constant number of 1/0 pins 
no matter what the size of the neural network being 
simulated. Simulations show that the solutions produced 
by the stochastic neural net do not suffer any ill effects 
due to its probabilistic, time-multiplexed nature, yet its 
speed exceeds those of a wide variety of other neural 
network implementations by 2-6 orders of magnitude. 

A prototype of the stochastic architecture which sup- 
ports 100 neurons has been designed and is being fabri- 
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