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Abstract This article discusses mechanisms of pattern formation in
2D, self-replicating cellular automata (CAs). In particular, we present
mechanisms for structure replication that provide insight into
analogous processes in the biological world. After examining self-
replicating structures and the way they reproduce, we consider their
fractal properties and scale invariance. We explore the space of all
possible mutations, showing that despite their apparent differences,
many patterns produced by CAs are based on universal models of
development and that mutations may lead either to stable or to
unstable development dynamics. An example of this process for all
possible one-step mutations of one specific CA is given. We have
demonstrated that a self-replicating system can carry out many slightly
different but related entities, realizing new different growth models.
We infer that self-replicating systems exist in an intermediate regime
between order and chaos, showing that these models degrade into
chaotic configurations, passing through a series of transition stages.
This process is quantified by measuring the Hamming distances
between the pattern produced by the original self-replicator and those
produced by mutated systems. The analysis shows that many different
mechanisms may be involved in patterning phenomena. These include
changes in the external or internal layers of the structure, substitution
of elements, differential rates of growth in different parts of the
structure, structural modifications, changes in the original model, the
emergence of different structures governed by different CA rules, and
changes in the self-replication process.
1 Introduction
An organism’s morphogenesis—its development—as it adapts to its environment consists of an
ongoing sequence of changes involving gene regulation, changes in cell shape, intercellular
cooperation, and other elementary processes [8]. Of key importance is cellular self-replication.
But what are the mechanisms underlying self-replication? Might it be possible to use studies in the
artificial domain to gain insight into the working of biological systems? Possible answers to these
questions can be found in the works of D’Arcy Thompson and Alan Turing, two of the first
scientists to concern themselves with morphogenesis. Thompson [7] pointed out that the form of an
organism is determined by the way it grows. He went on to argue that just as the shape of nonliving
structures depends on the properties of inorganic matter, so the form of new biological structures is
a consequence of the mathematical and physical properties of living matter. Form is a mathematical
problem, and growth is a physical problem. Turing [23] proposed a hypothetical molecular
mechanism for pattern formation. Turing’s reaction-diffusion system begins in a homogeneous
Artificial Life 11: 339–362 (2005)
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state. As chemical substances diffuse through the system, they react with each other, producing
patterns. Extending this model to the biological world, Turing hypothesized that when those
morphogens are present in sufficient concentration, they give rise to organs.

Today, Turing’s reaction-diffusion models are well known to mathematical biologists [14, 17]. In
real chemical systems, patterns emerge from the interaction between the length scale implicit in the
reaction-diffusion dynamics and the geometry of the space in which they are embedded. Turing’s
model is a paradigm for modern studies of morphogenesis. Much theoretical work has used Turing’s
reaction-diffusion model to explain patterning phenomena in morphogenesis. Natural [11, 15] and
artificial experiments [9], however, did not produce clear evidence that the Turing model is at work in
the biological world. Although specific patterns, such as skin coloring in animals, have been modeled
using Turing’s approach, researchers have yet to produce a model that captures the essence of
morphogenesis.

Morphogenesis is closely related to proliferation via self-replication. One of the main goals and
challenges of contemporary research is to reproduce this process, generating lifelike forms in digital
media. Much of this work is based on von Neumann’s [26] cellular automata (CAs): discrete
dynamical systems that display complex behavior and the ability to self-replicate [12]. They are able
to represent the ‘‘logic of life,’’ as well as being capable of universal computation [27], in close
relationship with the idea that life is based on informational processes.

Research on self-reproducing structures can be divided into broad categories. Studies in the 1950s
and 1960s [26, 6, 25] drew on von Neumann’s concept of a self-reproducing automaton. Later
research, initiated by Langton [12], attempted to identify the minimum system capable of nontrivial
reproduction [3, 22, 21, 16, 20]. During the 1990s, many studies investigated the computational
capabilities of self-replicators [18, 5]; very recent research has concentrated on self-reproducers’
emergence and evolution mechanisms [13, 4]. Other work has looked into ways of overcoming the
limitations imposed by the use of a two-dimensional lattice space [24]. One way of achieving this goal
is to use so called graph automata. These automata are not restricted to a particular class of lattice
space, but can be used to describe processes with variable numbers of elements and variable
topologies.

In this article, we investigate emergent patterning phenomena in self-replicating 2D CAs
generated by genetic algorithms [1]. In the systems we describe, self-replicators emerge spontane-
ously from the primeval soup and are very stable, reemerging after collisions and remaining
dominant over long periods of time. During the self-replication process, these systems display
changes in scale while maintaining invariance in form. They reveal an algorithmic logic in
reproduction, which can proceed at different rates, adopting different patterns of spatial organiza-
tion. The duplicated information, increasing the total quantity of the system at a microscopic level,
creates global changes at a macroscopic level, which modify the quality of the system. These changes
may affect the form and function of self-replicators and the time scales on which they operate. In the
same way as the lengthening of DNA may facilitate the evolution of new functionality in biological
organisms, the increase in the quantity of information in the system facilitates qualitative and
functional change. The increase does not in itself produce any significant new information. Nor does
it directly cause an increase in complexity. But it nonetheless provides raw material for the
production of new information in the future.

The replication of structures can be seen as the creation of a sort of redundancy in the system.
Self-replication allows the reproduction of the characteristics of a structure within a system that is
more complex than the system in which it originally evolved, thereby providing a basis for the
emergence of novel functionality. Replication, we believe, involves a combination of multiple
phenomena. Given the dynamic context in which self-replication takes place, information tends
to multiply until a structure acquires dynamics, allowing it to achieve novel functionality. When a
structure reproduces, it may produce a very similar structure, one that is slightly different, or one that
is very different. The differences may be quantitative (e.g., the number of cells in the structure) or
qualitative (e.g., different states or different combinations of these states, different behavior). But in
some way, on a larger scale, they are synchronized. The mathematical language used to describe these
Artificial Life Volume 11, Number 3340
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phenomena ref lects the characteristics of the replication algorithm: a product of evolution that we
have rediscovered in artificial systems.

In what follows we will argue that self-replication is a basic morphogenetic process, underlying
growth in both living and artificial systems. If this is so, self-replicators can be seen as a model for
the basic informational and computational capabilities underlying life, even if this is not the only key
aspect. Section 2 discusses formal aspects of two-dimensional CAs using k-totalistic rules. We
describe how it is possible, starting from a single system, to obtain a family of derived structures.
Section 3 introduces the concept of self-replicating structures and the mechanisms through which
they reproduce themselves. The discussion focuses on the fractal nature and scale invariance of these
structures. It is shown that, despite their apparent differences, many patterns are organized around
universal models of growth, which can be stable or can be rendered unstable by perturbations that
lead the systems towards chaotic configurations. In Section 4 we explore the space of all possible
single-step mutations experimented on, and in Section 5 we describe the patterning phenomena
occurring when the system undergoes mutations.
2 Formal Aspects of k-Totalistic Cellular Automata

From a formal point of view, a CA can be thought as a tuple

A ¼ ðd ; S;N ; f Þ ð1Þ

where d is a positive integer that indicates the dimension of the CA (1, 2, 3, or more), S = {0, 1, . . . ,
k � 1} is a finite set of states, N = (x1, . . . , xn) is a neighborhood vector containing the n elements
of Zd , and f is a local rule defined as follows:

f : Sn ! S: ð2Þ

In our case d = 2, and the neighborhood consists of all the cells with a local interaction
ray r, so Equation 2 associates each of the (2r + 1)2 elements in S with another element of
S, that is,

� � � � � � � � �
� � � sijðtÞ � � �
� � � � � � � � �

0
B@

1
CA �! sijðt þ 1Þ ð3Þ

with sij a S.
A rule that discriminates all possible cases of the neighborhood is expressed in exhaustive form,

considering all kk
(2r+1)2

possible cases. In this article we consider two-dimensional CAs, using a
particular form of rule, called hereafter the k-totalistic rule. Such rules do not distinguish the positions
of neighbors in the surrounding area, but consider only the number of such cells that are in a given
state.

Let hs(t ) be the number of cells in the neighborhood, in state s at time t. Let V be the set of all
possible configurations of the neighborhood, with each configuration represented as a string of
integers (h0h1 � � � hk � 1), satisfying the constraint

h0 þ h1 þ � � � þ hk�1 ¼ ð2r þ 1Þ2; hi � 0; i ¼ 0; 1; � � � ; k� 1: ð4Þ
Artificial Life Volume 11, Number 3 341
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By definition, a k-totalistic rule T is a function that associates each configuration v a V with an
element of S:

T : V ! S: ð5Þ

The function is equivalent to a CA rule table, where

ðh0h1 � � � hk�1Þ 2 V �! Tðh0h1 � � � hk�1Þ 2 S:

The table associates each of the first k – 1 totals with a number between 0 and k – 1; the sum of
these numbers satisfies the constraint in Equation 4. For example, for a k-totalistic CA with k = 4
and r = 1, the string (240) indicates that two elements of the nine-cell neighborhood are in state 0,
four are in state 1, none are in state 2, and three are in state 3. The rule associates the string (240)
with a single element s a S. In this case, there will be 220 rules in the rule table. The constraint in
Equation 4 restricts the analysis to a much smaller number of configurations. The number of
possible configurations is given by the number of ways in which it is possible to place (2r + 1)2

indistinguishable objects in k containers. The rule table in Equation 2 can be represented as a
sequence of NT numbers:

l ¼ ðs1; s2; � � � ; sNT
Þ; ð6Þ

with si 2 S and i ¼ 1; 2; � � � ;NT . Taking Equation 6 as the CA rule, NT is given by

NT ¼
kþ ð2r þ 1Þ2 � 1

ð2r þ 1Þ2

 !
¼ ðkþ ð2r þ 1Þ2 � 1Þ!

ð2r þ 1Þ2!ðk� 1Þ!
: ð7Þ

To associate a given configuration (h0h1 � � � hk � 1) 2 V with a specific si a S, we establish the
convention that si corresponds to the ith configuration in lexicographical order. To process the rule
algorithmically, we represent it as a decision tree [10] in which the values of hj are intermediate
nodes, the alternatives are paths between nodes, and the si are the leaves, or terminal nodes. In this
case, a configuration (h0h1 � � �hk � 1) 2 V represents a directed path leading to the leaf si. For k = 2, the
k-totalistic rules are equivalent to the well-known totalistic rules for Boolean CAs. In what follows,
we will limit our considerations to legal rules where the last character in the string is 0 (0 is
the quiescent state). If all elements of the CA have the value 0, they will take the value 0 in the
next time step.
3 The Evolution of a Self-Replicating System

and the Process of Mutation
A CA may be considered as a machine that, given an input, generates an output. The generation of
outputs from inputs can be interpreted as a form of information processing. Given an initial
configuration x(0), a special device uses the rule table to generate a sequence of configurations in the
form (x(0), x(1), . . . , x( t )). This sequence of CA states is called a trajectory and can be represented as
a spatial-temporal pattern, providing in turn different configurations in the time steps of the
simulation.
Artificial Life Volume 11, Number 3342
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Starting from the string l (Equation 6), we can create a new string l V of length NT (which we call
the string of consultation). This string collects the characters that are not consulted by a CA in the rule
table, using a neutral symbol y, and puts in evidence the characters that are consulted in the evolution
of the systems. The string appears in the following form:

l 0 ¼ ð y; y; si ; y; � � � ; sj ; y; � � � ; sk; y; � � �Þ: ð8Þ

In this way, it is possible to know exactly which characters are involved in the realization of the
system’s evolution.

Let us define L as the set of all possible strings l of length NT , and L V as the set of all possible
consultation strings. The sets L and l V constitute languages, defined respectively over the alphabets
S = {0, 1, 2, � � � , k � 1} and {S V = 0, 1, 2, � � � , k � 1, y}. Here l V is a function of time. Consider an
initial state x(0), in which the majority of elements have the value 0. Over time, the number of
characters in l V that differ from y will tend to grow. In some cases, the string will achieve a steady
state. That is, from time T onwards,

l 0ðtÞ ¼ l 0ðTÞ 8t � T : ð9Þ

In conditions where Equation 9 is true, l V can be used to construct a consultation network, whose
vertices are constituted by the set of characters with values other than y. We label the vertices of the
graph using the symbol R followed by a number that indicates the position of the character in l V. The
value of each vertex is the value of the corresponding character. We define the instantaneous consultation
string l W(t ) as the consultation string obtained by using x(t ) as the initial data and computing a single
time step of the CA system’s evolution. If we define L W as the set of all instantaneous consultation
strings, L W will be a language over S V. In the case shown in (Equation 9), the instantaneous
consultation strings represent a limit cycle:

9T̄ 2 N : l WðtÞ ¼ l Wðt þ T̄Þ; ð10Þ

where T̄ is the period of the consultation network.
We define a sum of strings as

l ðtÞ ¼ l 00ð0Þ  l 00ð1Þ  � � �  l 00ðtÞ; ð11Þ

where the operator P is defined as

 : L 00 � L 00 ! L0;

ðl 001 ; l 002 Þ �! l 0 ¼ l 001  l 002 ;

and where the elements ci a l V are as follows: ci = y if s2i = s1i = y, and ci = s1i or ci = s2i if at least one
of the corresponding elements of the strings l W1, l W2 has a value other than y. In instantaneous
consultation networks derived from the same string l, if both elements have values other than
y, then s2i = s1i.
Artificial Life Volume 11, Number 3 343
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A mutation is defined by the function

ma
s : L ! L;

l 2 L �!Ra s 2 L ð12Þ

that associates an l a L with a new string Ra_s a L possessing the same characters as l, except for
the character in position a, which is assigned the new value s. If Ra_s = l, the mutation is the identity
element. A string l V with|l V| = z (where z is the number of characters of l V different from y) that
displays the features described in Equation 9 will contain kz mutations, of which z are identities. The
strings Ra_s a L generated by substituting characters 0, 1, � � � , k � 1 in the string l, in position a,
whenever the characters of l V have values other than y.

The set Ml
l V of strings Ra_s a L is the space of all possible mutations:

Ml
l 0 ¼ fma

s ðl Þ ¼ Ra s 2 Lg: ð13Þ

4 Self-Replicating Systems

In a previous article [1], we used the string in Equation 6 as the genotype for a genetic algorithm, and
defined various indices of complexity as a fitness function, based on the input entropy [29]. For step
t in a simulation, the input entropy St is defined as

St ¼ �
XNT

i¼1

Qt
i

n2
� log

Qt
i

n2


 �
; ð14Þ

where n2 is the number of cells in the CA grid, and Qi is the frequency of consultation of the ith
character of string l.

We performed many experiments, and we found different kinds of self-reproducers [1]. In almost
all evolved rules, self-replicating systems are always present. It thus appears that artificial matter
has strong potential for self-replication and evolution. Many self-replicating structures display
stable consultation networks [2]. In order to examine the patterning phenomena, let us consider a
k-totalistic CA where k = 5 and r = 1, with
l ¼ 00030000000000000120000220013000000000404440002004000000102

00000000000400014213000000023000042130000300000000004000420

00140000000120010300000000000020010010000010000010401430000

00000000400300001000401004003020040000003000000000000400000

00000002100000040000000410001031030000000000000431000210000

20023004004200100000000000000000000010001000002442010000000

42201000000000010000000000130000001000000000000000001000000
00200000000320000410030300000310334330002400414000042141001

30030044110124002000000000002404401020104002004300020020000

43100000000000010030034000001303413000000000400011300000043

00000301300000100300002000134002002000100000100004000100000

01000304040100000000040140004230040003000004400000000020100

0130000:

ð15Þ
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Then x(t ), the state of the CA at time t, can be represented by an n � n matrix whose elements have
values lying between 0 and 4.

Consider now the following initial states:

xð0Þ ¼

00::::::::::00
::::::::::::::::::
0::01110::0
0::01110::0
::::::::::::::::::
00::::::::::00

0
BBBBBB@

1
CCCCCCA
: ð16Þ

The matrix x(0) consists exclusively of 0’s except for two sequences of three 1’s, in two different
rows. This means that only six cells of the system are active (these are the only cells whose values are
different from the quiescent state). Furthermore,

x0 ¼

00000

01110

01110

00000

0
BB@

1
CCA

is a 4 � 5 submatrix of x(0).
At the next time step of the simulation, the CA takes on states

xð1Þ ¼

0 ::: ::: ::: ::: ::: 0
::: ::: ::: ::: ::: :::
::: ::: ::: ::: ::: :::
0 ::: 0010100 ::: 0
0 ::: 0134310 ::: 0
0 ::: 0134310 ::: 0
0 ::: 0010100 ::: 0
::: ::: ::: ::: ::: :::
::: ::: ::: ::: ::: :::
0 ::: ::: ::: ::: ::: 0

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

; xð2Þ ¼

0 ::: ::: ::: ::: ::: ::: 0
::: ::: ::: ::: ::: ::: :::
0 ::: 000010000 ::: 0
0 ::: 000000000 ::: 0
0 ::: 101343101 ::: 0
0 ::: 101343101 ::: 0
0 ::: 000000000 ::: 0
0 ::: 000010000 ::: 0
::: ::: ::: ::: ::: ::: :::
0 ::: ::: ::: ::: ::: ::: 0

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

xð3Þ ¼

0 ::: ::: ::: ::: ::: ::: 0
::: ::: ::: ::: ::: ::: :::
::: ::: ::: ::: ::: ::: :::
0 ::: 111000111 ::: 0
0 ::: 111000111 ::: 0
::: ::: ::: ::: ::: ::: :::
::: ::: ::: ::: ::: ::: :::
0 ::: ::: ::: ::: ::: ::: 0

0
BBBBBBBBBB@

1
CCCCCCCCCCA
Artificial Life Volume 11, Number 3 345
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It may be observed that after three time steps, the system generates two new structures, which show
the same features of the initial xV. This is self-replication.

Figure 1 illustrates the evolution of this structure over time. At steps T = 3, T = 9, and T = 15
the initial configuration repeats itself, generating respectively first two, then four, then four more
copies of the initial data. This self-replicator appears rapidly and spontaneously in the primeval
soup, and is very stable, regardless of the initial xV. In this kind of self-replicator, slight
modifications in the structure of the self-replicator have no effect on its overall behavior. Although
the dynamics can generate configurations of great complexity, the basic development models are
very simple.

If we examine the 2D view in Figure 2, we observe that the final configuration is obtained
from basic pieces that, following simple rules, realize a fractal pattern: each piece is repeated
every time, in different but related steps, during the evolution of the self-replicating system.
The way in which this process proceeds suggests that the patterns produced by the self-
replicator are constrained by hidden rules specifying the way in which they can be put
together. The final pattern is repeated many times, at different levels, with substructures
repeating larger patterns on a smaller scale. In short, the system displays self-similarity, as
indeed many self-replicating systems do. Figure 3a, for example, is similar to the Sierpiński
triangle.

The logic underlying the self-replicating behavior can be described in precise algorithmic
terms. Many subalgorithms can be nested together, giving life to complex growth dynamics.
Figure 1 . Development of a self-replicator. The figure shows the state of the self-reproduction process at times T = 3, T =
9, and T = 15.

Artificial Life Volume 11, Number 3346



Figure 2 . Fractal growth occurs at specific stages in the simulation. The 2D spatial-temporal structure, generated after 20
steps of simulation, is multiplied in the following 20 steps and multiplied again after 80 steps.

Emergent Patterning Phenomena in 2D Cellular AutomataE. Bilotta and P. Pantano
This kind of fractal patterning is one of the universal models nature uses in regulating
the growth of natural organisms and is frequently observed in the development of leaves and
trees [19].

In order to explain this phenomenon, let us consider the image in Figure 3a. Figure 3b shows
the results when we apply the following rule: if all Moore neighbors are filled, generate a filled
cell; if at least one Moore neighbor is empty, generate an empty cell. This procedure allows the
removal of the external configuration and the production of a skeleton image, in this case a
Sierpiński triangle. By applying the inverse rule (generate a filled cell if the Moore neighbors
contain at least one filled cell), we obtain the image in Figure 3c, showing a larger-scale Sierpiński-
like pattern.

This phenomenon is well known in the elementary CA (ECA) literature. According to
Wolfram [28], some CAs have the ability to emulate the behavior of others. For example,
ECA rule 90 emulates the behavior of rule 22 and (with specific initial data) rule 126.
This process is made possible by the dynamics of specific spatial-temporal structures, or
blocks.

But, if we examine Figure 4, we can find patterning phenomena that are more complex than
this: the Sierpiński-like pattern (which we refer to here as the external shell ) contains another structure
Artificial Life Volume 11, Number 3 347
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(the internal core), which develops as a k=2, r=2 1D CA. The rule table for this structure is the
following:

11111111111111110000000000000000

11111111000000001111111100000000
11110000111100001111000011110000

11001100110011001100110011001100

10101010101010101010101010101010

00000001000101100001011101111100

The rule table can be interpreted as follows: if the cell’s neighbors include more than two filled cells,
output 0; if the neighbors include exactly two filled cells, output 1; if the neighbors include one filled
Figure 3 . Three stages in the identification of the internal organization of a complex pattern. (a) The initial con-
figuration of the self-replicator. (b) A skeleton image, organized as a Sierpiński triangle. The image was produced by
using a rule to remove the external configuration of the first pattern. (c) The image produced when the inverse rule
is applied.

Artificial Life Volume 11, Number 3348



Figure 4 . The process used to extract the external shell and the internal core from the pattern generated by the self-
replicator. (a) The pattern generated by a self-replicator xV. (b) The external core, as simulated by ECA rule 90. (c) The
self-replicator’s internal core as simulated by a k = 2, r = 2 totalistic rule.
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cell on either end of the row, output 0; if the single filled cell is elsewhere, output 1; if the neighbors
include no filled cells, output 0. The two nested growth processes, driving the self-replicating system
xV, generate a multifractal structure.

The first structure has a time dimension of 3, while the second has a time dimension of 6. In
reality, many self-replicating systems have the ability to bring together two different growth
processes, generating nested structures. When the structures generated in this way are in tune,
development of the CA systems is synchronized. A lack of synchronization leads to chaotic patterns.
In the self-replicating system xV, we have |l V| = 31; the network is stable during its development.
Figure 5 shows the consultation network q for the self-replicating structure. The vertices of the
network and their values are given in Table 1.
5 Genetic Mutations

The similarity between certain features of artificial, 2D self-replicators and specific characteristics of
biological organisms suggests an analogy between the dynamics of these systems and those of
DNA in the biological world. We argue that artificial self-replicators can be considered as proto-
organisms, whose genomes (networks of interconnected genes) exactly code their form, function,
Artificial Life Volume 11, Number 3 349



Figure 5 . Graph of the consultation network for the self-replicator. In this network |lV| = 31.
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and behavior. Mutations, by changing the genome, can produce significant changes in these
traits, giving rise to complex growth dynamics and the emergence of internal clocks, activating or
inhibiting specific forms of genetic expression at specific stages during the proto-organism’s
development.

Starting from the string l and using the network of consultation q of the system we have
described above (which we shall now call the genetic network), we can build up the space of all
the mutations Mq = Ml

l V the self-reproducer supports. This space contains 155 elements, of
which 31 are identical strings obtained by application of the identity operator. By allowing the
self-replicating structure to develop for a certain number of steps (say, 32), bl a Mq we
construct an l V a l V. Let M Vq be the set of all l V constructed in this way. We can now
represent the space M Vq using a grayscale code, in which each character of a string is identified
by a particular gray tone, as in Figure 6. We call this image the spectrum of the self-replicating
Table 1. Vertices and values of the consultation network q.

R306 A 4 R629 A 1 R664 A 0 R692 A 0 R708 A 0

R473 A 3 R638 A 0 R672 A 0 R693 A 4 R710 A 1

R510 A 0 R646 A 0 R673 A 1 R698 A 0 R711 A 3

R512 A 0 R648 A 0 R680 A 3 R700 A 0 R712 A 0

R589 A 4 R650 A 0 R681 A 0 R701 A 0 R714 A 0

R615 A 0 R663 A 0 R684 A 0 R703 A 0 R715 A 0

R628 A 0

Artificial Life Volume 11, Number 3350



Figure 6 . The self-replicator spectrum, showing the space of all possible mutations Mq. The space contains 155 strings; 31
are generated by identity mutations. Each string is represented by a row, and the points of which each row is composed
represent the values of the consulted characters.
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system xV. Whenever a character of the string l is consulted, a dot is displayed in the white
space. Different gray-shaded dots map to different CA values. It is interesting to observe that
many characters represented on the left side of the space are never consulted during the
development of the system. The right side, on the other hand, is impressively active.

The way in which patterns develop is closely correlated with the number of characters consulted
during the development process. Changes to the consultation strings lead to variations in behavior;
the trajectories produced by novel strings diverge from those in xV. In what follows we describe
several different regimes of system behavior (we recall that |l V| is the number of characters of
l V different from y):
jlWj < 19. The only three strings to satisfy this condition are R710_0, R710_3, R710_4. After a
very few steps, all patterns are extinguished and the system reaches a fixed point 0, with 0 active
elements.
19 � jlWj � 30. The set of strings of length 19–30 contains 14 patterns (see Figure 7). Almost
all these systems maintain the self-replicating capabilities of xV, displaying varied but substantially
Sierpiński-like patterns. The only exceptions are R638_4, which develops into two related gliders,
and R714_3, which disappears after a few steps.
31 � jlWj � 40. For strings in this range, the structure and function of the basic self-replicator
are robust to mutation. During our exploration we found 18 modified self-replicators, which consult
up to 30 characters, and a single self-replicator that develops into two related gliders (see Figure 8).
The phenotypes of R512_2, R680_1, R680_4, R701_2, R712_3, and R712_4 display modified
functionality with respect to the original self-replicator. In these phenotypes the number of
characters consulted varies over time. The patterns produced by these systems appear to be very
complex, and may at times be completely chaotic.
41�jlWj �50. StringsR650_3,R673_3,R680_0,R684_3,R684_4,R698_3, andR711_4 change
the function of the original self-replicator; as in the cases cited earlier, the number of rules consulted
varies as the patterns evolve. The patterns generated by these rules range from organized to chaotic
(see Figure 9).
51 � jlWj � 60. At first sight, the phenotypes produced by strings in this interval do not appear
to be self-replicators. However, further examination showed that R673_2 creates a self-
replicating structure. Two additional systems generate highly complex, gliderlike patterns (see
Figure 10).
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Figure 7 . Patterns generated by strings of length 19–30. The first is the basic self-reproducing system.
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61 � jlWj . In this range, we found only one self-replicator, realized by the string R306_0, which
consults 80 characters, and an additional system that evolves into two related, very complex glider-
like configurations.

The analysis of the set of all possible mutations shows that the patterns produced by mutated CA
strings can be classified in terms of the presence or absence of self-replication and the number of
elements in their respective genetic networks.

Self-replicators were identified using a hybrid automatic and manual procedure. In the first
(automatic) phase of the analysis, we identified all self-replicators with a period of less than 16 (T <
16). To achieve this goal, we ran each simulation 19 times from step 0 to step 16 and collected the
consultation strings. The results of this initial round of simulation were used as input for a second
16-step round. At the end of this round, consultation strings were collected again. The first set of
consultation strings was compared with the second. Rules whose consultation strings did not differ
between the first and second rounds were identified as self-replicators. In a second phase of the
analysis, self-replicators with periods greater than 16 were identified by manual inspection. The
analysis produced the results described below.
� Self-replicating systems. Exploration of the space of all possible mutations discovered
33 strings with self-replication periods less than 16. The consultation networks for
these strings contained between 20 (R700_3) and 44 characters (R629_2). The
second manual phase of the analysis identified a number of self-replicators with
T > 16: R306_0 (T = 34,|l V| = 80); R306_3 (T = 18, |l V| = 51); R510_3
(T = 21, |l V| = 30); R615_3 (T = 21, |l V| = 33); R673_2 (T = 24, |l V| = 56);
R698_3 (T = 24, |l V| = 49).
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� Non-self-replicating systems. Although some of these strings produced regular patterns; they do
not display recognizable self-replication. Strings belonging to this category can be divided
into four subgroups:
A. The subgroup of strings (R710_0, R710_3, R710_4, R714_3, R714_4) generates ordered
behavior. These strings have consultation networks of size 17, 14, 16, 27, and 44 respectively.
Figure 8 . Patterns generated by strings of length 31–40.

Artificial Life Volume 11, Number 3 353



Figure 9 . Patterns generated by strings of length 41–50.
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B. The seven strings in this subgroup (R638_1, R638_3, R638_4, R648_4, R672_3, R692_3,
R698_4) generate gliderlike patterns. The sizes of their respective networks lie in the range between
28 (R638_4) and 66 (R638_1 and R648_4).

C. This group of strings (R673_4, |l V| = 68; R692_4, |l V| = 56) generates glider guns. R692_4 is
noteworthy for its very complex dynamics.

D. This fourth subgroup contains 67 chaotic CAs. These systems display highly unpredictable
behavior and produce the broadest range of patterns observed in any of the systems examined.
The sizes of their genetic networks range from 63 (R711_4 and R589_3) to 316 (R714_2).

Figure 11 illustrates the space of all possible single-step mutations, showing the relationship be-
tween the number of nodes in the consultation network and CA behavior. Inspection shows that in
one region of this space, the self-replicators develop continuously; in a second region they die (at the
bottom of the figure); in a third region they generate chaotic patterns (at the top of the figure).
6 Patterning Phenomena

Let us consider

M 00
� ¼ f�0 2 M 0

�=j�0j ¼ const; T̄16g; ð17Þ
the set of all strings r aM VVq oM VVq for which it is possible to construct a consultation network u a
A (where A is the set of all consultation networks), the self-replication period T̄ < 16, and E
are the strings defining the self-replicating CA. M VVq contains 33 elements. The values of |EV| range
from 20 (two strings generated by mutations m700

3 and m693
0 ) to 44 (m629

2 ) (see Figure 12).
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Figure 10 . Patterns generated by strings of length 51–60.
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Table 2 lists strings in M Wq and the sizes of their associated consultation networks. The
mean value for all |EV| a M Wq is approximately 31. To identify the structural transformations
underlying this classification, we compared the patterns generated by mutated self-replicating
systems with those produced by xV. As described earlier, the initial self-replicator produced a
Sierpiński-like pattern, with an external shell and an internal core, governed respectively by ECA
rule 90 and by a k = 2, r = 2 CA rule. All the self-reproducing systems obtained by mutating this
first self-reproducer are in turn Sierpiński-like configurations, which contain interesting processes
related to patterning phenomena.

The differences between the patterns realized by mutated systems and those generated by the
initial model were identified using a technique based on Hamming distances. For each system, we
performed 32 simulation steps on a 100 � 100 grid. The resulting 3D time-space patterns were
then projected onto a 2D space. The Hamming distance was computed by comparing the pattern
generated with that produced by the initial model and counting the number of discordant cells.
Using Hamming distance as an evaluation function, we constructed a hierarchy of mutational
processes.

The graph in Figure 13 shows the Hamming distance between each of the self-replicating patterns
and the pattern generated by the initial self-replicator. As the graph shows, some strings (R712_1;
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Figure 11. Representation of the space of all possible mutations. The y axis shows |l V|. The line on the far left corresponds
to the consultation network for the original self-replicator. The tree structure represents the complete set of |l V| values.
Clustered in the bottom segment of the figure, there are systems that do not self-replicate, above which self-replicating
systems are found.
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628_3; 615_1) produced patterns whose two-dimensional projections were identical to those for the
initial model. It should be noted, however, that these systems are based on very different
consultation networks: d = 1, d = 7, d = 13, respectively, where d is the difference between the
number of vertices in the network of consultation of the basic self-reproducers and the
corresponding number for the modified system.

For a second group of six patterns, the Hamming distances lie in the range 8–15, the differences
between patterns are visible, and the consultation networks are close to the network for the original
model (minimum: d = 1; maximum: d = 2).

Three patterns (R646_2, R512_4, and R711_0) have Hamming distances in the range 30–60; the
consultation networks are still fairly similar (d = 5, d = 1, and d = 8). Substitutions in the external
shell and in the internal core are evident, but do not affect the general configuration of the pattern.

Three patterns (R693_3, R693_0, and R629_2) have Hamming distances between 105 and 133
and display larger differences in their consultation networks than the patterns with smaller Hamming
distances.

R629_2 has an internal core that is completely different from the core in the initial model. The
first row in Figure 14 displays the two patterns for comparison. The first panel in the second row
shows the results when the the second pattern is subtracted from the first; the second panel shows
the results of the inverse operation where the first pattern is subtracted from the second. Six patterns
have Hamming distances between 194 and 264, with network differences d = 16, d = 18, and d = 21.
All these patterns present modifications to the internal core.

Another set of 11 patterns has Hamming distances between 375 (R701_2) and 442 (R700_2). All
these patterns display major modifications with respect to the initial model, showing changes both to
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Figure 12 . Collection of patterns generated by self-replicators and projected onto a 2D space. The first and last panels
show the initial self-replicator model.
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Table 2 . Strings in MVVq and the size of of associated consultation networks.

R306_1 A 28 R615_2 A 35 R629_4 A 31 R681_3 A 32 R701_3 A 32

R306_2 A 36 R615_4 A 30 R638_2 A 32 R693_0 A 20 R708_3 A 37

R473_0 A 21 R628_2 A 32 R646_2 A 35 R693_3 A 24 R711_0 A 24

R510_4 A 35 R628_3 A 31 R646_3 A 32 R698_2 A 37 R712_1 A 31

R512_3 A 31 R629_0 A 30 R664_2 A 35 R700_2 A 22 R712_2 A 32

R512_4 A 31 R629_2 A 44 R664_3 A 32 R700_3 A 20

R615_1 A 29 R629_3 A 30 R664_4 A 32 R701_2 A 39
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the external shell and to the internal cores. These are governed by a k = 3, r = 1 1D CA rule with the
following rule table:

222222222111111111000000000

222111000222111000222111000

210210210210210210210210210

102102100021021021210210010

where 1 represents the external shell and 2 the internal core.
Figure 15 shows the pattern generated by R473_0. Differences between these networks vary

between a minimum of d = 2 for R629_0 and R629_3) and a maximum of d = 24, for R700_2. In
the patterns generated by R700_3 and R700_2 the increased differences in the consultation networks
(respectively d = 20 and d = 24) are due to substitutions in the external shell.

The patterns generated by R638_2 and R698_2 have Hamming distances of 634 and 645
respectively. The respective differences in the consultation networks are 12 and 25. The patterns
Figure 13 . The Hamming distances between the 2D projection of the pattern generated by the initial self-replicator xV,
chosen as model, and the patterns generated by mutated systems.
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Figure 14 . Comparison between the patterns produced by the prototype self-replicator (left ) and R629_2 (right ). The
two systems differ significantly in the structure of the internal core.
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generated by these rules are similar to those in the initial model, but the rates at which they appear
are different (see Figure 16). These processes may be classified as follows:

1. Deletion or insertion of elements in the patterns, without modifying the original arrangement.
These operations can be performed both on the external shell and on the internal core of the
patterns as well.

2. Replacement of internal or external elements in patterns.

3. Small changes in the initial germs (or modules) that are amplified by changes in the temporal
structure of the related patterns, where time affects the growth of the starting model.

4. Modifications of the original model and realization of different structures governed by different
CA rules.

5. Dramatic changes in the self-replication process, determining a structural change in patterns.

6. Mixed changes of both temporal rhythms and structural modifications.
Figure 15 . A comparison between the patterns generated by the initial self-replicator (left ) and R473_0 (right ). R473_0
presents modifications both to the external shell and to the internal core. The growth of the external shell and internal
core is governed by a k = 3, r = 1 1D CA rule.
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7 Conclusions

Maynard Smith and Szathmàry [14] have identified a series of major transitions in biological
evolution, which they believe are responsible for the Earth’s current biological diversity. The
first transition involved the emergence of self-replicating molecules. Cooperation within pop-
ulations of self-replicating molecules created an environment favoring the replication of other
molecules.

In the biological domain, simple or very complicated organisms adapt themselves to different
environmental situations throughout life. Here ‘‘adaptation’’ can denote three different things. The
first definition refers to any alteration in the structure or function of an organism or any of its parts
resulting from natural selection. The organism thus becomes better fitted to survive and multiply in
its environment. The second refers to a form or structure modified to fit a changed environment.
Finally, there is the ability of a species to survive in a particular ecological niche, because of
alterations of form or behavior occurring through natural selection.

The two-dimensional self-replicators described in this article emulate many of the charac-
teristics of biological self-replicators: their individual behavior is determined by their genomes;
genomes take the form of a network of connections which algorithmically determine the shape
into which the self-replicator develops. Mutations in the genome change this pattern of devel-
opment. More specifically these changes affect the timing of development, activating or inhib-
iting the expression of specific portions of the genome. Many mutated self-replicators display
changes in the pattern of self-replication, which may be organized in different geometrical and
spatial forms.

In the experiments reported in this article nearly all consultation strings of size 19–39 maintain
the external configuration and the functions of the original self-replicator. Consultation strings of
size 40–150 produce highly complex configurations, though they fail to produce the kind of
universal development model seen in ECA rules 90 and 150. Networks of size >150 produce chaotic
patterns, including very interesting phenomena that resemble phase transitions.

Many configurations do not change their general shape (a Sierpiński-like triangle) but generate
substructures within this basic configuration. Other patterns present very complex arrangements.
Often different patterns manifest different rates of growth. The biological and adaptive significance
of these variations is that a single basic model can give rise to many different patterns, rather in the
same way as occurs in natural language when different speakers use the same basic elements to
convey different meanings. Similarly, patterning phenomena constitute a semiotic process related to
Figure 16 . Row 1 shows the patterns generated by the initial self-replicator (left ) and R638_2 (right ). Row 2 shows
the differences between the two. It can be seen that many groups of cells are organized differently and grow at
different rates.
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the language of forms. The goal of morphogenesis is to generate meaningful information for
biological communication.

All these situations are characterized by changes in phenotypes. The presence of some biological
features in artificial 2D self-replicators would lead us to suppose that these systems are closely related
to the genetic dynamics that DNA realizes in the biological world. These features are: the presence
of genetic sequences, which individuate the self-replicators; the interplay among these genetic
sequences, the shape of the self-replicators, and their behavior; the logic of the self-replicator realized
by precise algorithms (these algorithms affect the time of the self-reproducing process, and many
algorithms can be nested together to give rise to complex dynamics of growth); the fractal
organization or geometry of the self-reproducing patterns; the genetic sequence, which is organized
as a network of connections. The self-replicators utilize one of these networks. When they undergo
mutation, they utilize other networks, thus following different paths in genetic space. Genetic
mutations in the genetic CA rule space cause the system to obey new rules, changing in this way the
logic of self-reproducer behavior and giving rise to completely different organisms according to the
proportion of rules shared. The genetic sequence can be considered to be governed by an internal
clock, which in the very precise steps of the organism’s evolution can realize mechanisms of
variation, activating, or inhibition of specific genetic groups. Furthermore, many variations yield
different patterns of self-reproducing behavior.
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