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Cellular automata (CA) rules can be classified automatically for a spectrum of ordered, complex, and chaotic

dynamics by a measure of the variance of input-entropy over time. Rules that support interacting gliders and

related complex dynamics can be identified, giving an unlimited source for further study. The distribution of

rule classes in rule-space can be shown. A byproduct of the method allows the automatic “filtering” of CA

space-time patterns to show up gliders and related emergent configurations more clearly.

The classification seems to correspond to our subjective judgment of space-time dynamics. There are also

approximate correlations with global measures on convergence in attractor basins, characterized by the dis-

tribution of in-degree sizes in their branching structure, and to the rule parameter, Z. Based on computer

experiments using the software Discrete Dynamics Lab (DDLab), this article explains the methods and presents

results for 1D CA. q 1999 John Wiley & Sons, Inc.
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1. INTRODUCTION

C ellular automata (CA) are a much-studied class of dis-
crete dynamical network that supports emergent be-
havior resulting from homogeneous, local, short-

range interactions. They are applied in many overlapping
areas: to model processes in physical, chemical, and bio-
logical systems such as fluid dynamics and reaction-
diffusion [1,2]; to study self-organization and self-
reproduction by the emergence of coherent interacting

structures [3,4]; in mathematics and computation where the

systems themselves are the focus of interest [5–7]. CA dy-

namics are driven by complex feedback webs that are diffi-

cult to treat analytically, except for special cases. Under-

standing these systems depends to a large extent on com-

puter experiments, where a key notion is that state-space is

connected into basins of attraction [8].

The ability of CA to support the emergence of coherent

interacting long-lived configurations provides a striking ex-
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ample of self-organization in a simple system and has con-
sequently become the focus of particular study. This sort of
behavior is characterized by interacting “gliders” (after Con-
way’s 2D “game-of-life” [9]). Glider dynamics can be seen
from a number of overlapping perspectives: Wolfram’s
complex (or class 4) behavior [10]; phase transitions be-
tween order and chaos [11]; computation [10,12]; and dis-
crete analogues of Prigogine’s far-from-equilibrium dissipa-
tive structures [13].

Because glider dynamics are relatively rare in CA rule-
spaces, their study has relied on the few known complex
rules in 1D CA. A more general theory would benefit from a
great many examples. Methods are described to classify
rule-space automatically, for a spectrum of ordered, com-
plex and chaotic dynamics, by a measure of the variance of
input-entropy over time. This allows screening out CA rules
that support glider (and related) dynamics, giving an unlim-
ited source for further study. The resulting classification
seems to correspond to our subjective judgment of space-
time dynamics. The method also gives statistical data on the
distribution of rule classes in rule-space, for varying neigh-
borhood sizes. Another useful byproduct allows automatic
“filtering” of the space-time patterns of any CA to show up
gliders and related emergent configurations more clearly.

The quality of dynamical behavior of CA, from ordered to
chaotic,1 is approximately reflected by convergence in ba-
sins of attraction and subtrees (referred to collectively as
attractor basins), in terms of their characteristic in-degree,
which influences the length of transients and attractor
cycles. The in-degree of a state is its number of pre-images
(predecessors). Bushy subtrees with high in-degree imply
high convergence and order. Sparsely branching subtrees
imply low convergence and chaos.

A simple convergence measure is G-density, the density
of garden-of-Eden states (those without pre-images) and
the rate of increase of G-density with system size. For order
these measures are relatively high, for chaos relatively low.
A more general measure is the distribution of in-degree
sizes. Generating attractor basins and making these mea-
sures relies on a reverse algorithm that computes pre-
images directly, without exhaustive testing. A consequence
of the reverse algorithm is the rule parameter, Z, which
predicts convergence by giving the probability that the next
unknown cell in a partial pre-image is uniquely determined.
This probability is calculated from the rule’s look-up
table [8].

T his article defines the class of 1D CA in question, rules,
trajectories, and basins of attraction, how these are
represented, and the methods for computing pre-

images and the Z parameter. The characteristics of “gliders”
and the methods for filtering space-time patterns and for
automatically classifying rule-space are described, and re-
sults presented of the classified rule samples. Preliminary
results are presented relating local measures (on trajecto-
ries), global measures (on attractor basins), and the Z pa-
rameter. The reasons why correlations are to be expected are
discussed. The work is based on computer experiments using
the author’s software Discrete Dynamics Lab (DDLab) [14].

2. 1D CA
A CA is a regular network of elements (cells), taking inputs
from their nearest (and next nearest and so on) neighbors
according to a fixed neighborhood template, which defines
the network geometry and the periodic boundary condi-
tions. Cells synchronously update their cell-state according

FIGURE 1

The space-time pattern of a 1D complex CA with interacting gliders. 308 time-steps from a random initial state. System size n = 700, neighborhood
size k = 7, rule (hex) = 3b 46 9c 0e e4 f7 fa 96 f9 3b 4d 32 b0 9e d0 e0. Cells are colored/shaded according to neighborhood look-up instead of
the value. Space is across and time down the page. The basin of attraction field for this rule for n = 16 is shown in Figure 6.
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to a homogeneous logical function on their inputs. The cell-
state ranges over a discrete alphabet (in this article just a
binary alphabet (0 or 1) is considered and the number of
cells is finite, with periodic boundary conditions. Figure 2
shows neighbourhood templates for 1D CA as applied in
DDLab (see [15] for 2D and 3D templates).

A CA neighborhood of size k has 2k permutations of val-
ues. The most general expression of the Boolean function or
rule is a look-up table (the rule-table) with 2k entries, giving
22k

possible rules. Subcategories of rules can also be ex-
pressed as simple algorithms, concise AND/OR/NOT logical
statements, totalistic rules [16], or threshold functions. By
convention [16] the rule-table is arranged in descending
order of the values of neighborhoods, and the resulting bit
string converts to the decimal or hexadecimal rule number.
For example, the k = 3 rule-table for rule 30,

7 6 5 4 3 2 1 0 . . . neighborhoods,
decimal

111 110 101 100 011 010 001 000 . . . neighborhoods,
binary

0 0 0 1 1 1 1 0 . . . outputs, the rule
table

The rule-table for other k values are set out in a corre-
sponding way. k ù 4 rules are referred to by their hexadeci-
mal rule numbers. k ø 3 rules are usually referred to by their
more familiar decimal rule numbers. The behavior space of
CA depends on the size of rule-space, 22k

, though rule sym-
metries effectively reduce this number. For example, the 223

= 256 rules in k = 3 rule-space reduce to 88 equivalence
classes [8].

3. TRAJECTORIES AND SPACE-TIME PATTERNS
A state of a CA is the pattern of 0s and 1s at a given time-
step. A trajectory is the sequence of states at successive
time-steps, the system’s local dynamics. Examples are
shown in Figures 1, 3, 4, and elsewhere. As well as showing
cells as light (0) or dark (1), an alternative presentation
shows cells in colors (or shades) according to their look-up
neighborhood (Figure 3). The most frequently occurring

colors can be progressively filtered to show up gliders and
other space-time structures as in Figure 4, done interac-
tively, on-the-fly, in DDLab for any CA. This is an alternative
method to the “computational mechanics” approach [12].

4. BASINS OF ATTRACTION

T he idea of basins of attraction in discrete dynamical
networks (which includes CA) is summarized in Figure
5. Given an invariant network architecture and the ab-

sence of noise, a CA is deterministic and follows a unique
trajectory from any initial state. When a state that occurred
previously is revisited, which must happen in a finite state-
space, the dynamics become trapped in a perpetual cycle of
repetitions defining the attractor (state cycle) and its period
(minimum one, a stable point). The approach is analogous
to Poincaré’s “phase portrait” in continuous dynamics.

These systems are dissipative. A state may have multiple
“pre-images” (predecessors) or none, but just one succes-
sor. The number of pre-images is the state’s “in-degree.”
In-degrees greater than one require that transient states ex-
ist outside the attractor. Tracing connections backward to
successive pre-images of transient states reveals a tree-like
topology where the “leaves” are states without pre-images,
known as garden-of-Eden states. Conversely, the flow in
state-space is convergent. The set of transient trees and the
attractor on which they are rooted make up the basin of
attraction. Local dynamics connect state-space into a num-
ber of basins, the basin of attraction field, representing the
system’s global dynamics. An example is shown in Figures 6
and 7.

5. CONSTRUCTING AND PORTRAYING ATTRACTOR BASINS
To construct a basin of attraction containing a particular
state, the network is iterated forward from the state until a
repeat is found and the attractor identified. The transient
tree (if it exists) rooted on each attractor state is constructed
in turn. Using the reverse algorithms, the pre-images of the
attractor state are computed, ignoring the pre-image lying
on the attractor itself, then the pre-images of pre-images,
until all garden-of-Eden states have been reached.

FIGURE 2

1D neighbourhood templates defined in DDLab, k = 0–13. Another common notation defines the radius r of a symmetric neighborhood,
r = (k − 1)/2.

The extra asymmetric cell in even
k is on the right. The wiring is
shown between two time-steps.
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Just a subtree may be constructed rooted on a state.
Because a state chosen at random is very likely to be a
garden-of-Eden state, it is usually necessary to run the net-
work forward by at least one time-step and use the state
reached as the subtree root. Running forward by more steps
will reach a state deeper in the subtree, so allowing a larger
subtree to be constructed.

A considerable speedup in computation is achieved by
taking advantage of equivalent dynamics because of rotated
states and “rotational symmetry” [8], a property of the regu-
larity of CA and periodic boundary conditions, resulting in
equivalent subtrees and basins.

Attractor basins are portrayed as state transition graphs,
vertices (nodes) connected by directed edges. States are
represented by nodes, by a bit pattern in 1D or 2D (as in
Figure 7), or as the decimal or hex value of the state. In the
graphic convention [8,14], the length of edges decreases
with distance away from the attractor, and the diameter of

the attractor cycle approaches an upper limit with increas-
ing period. The direction of edges (i.e., time) is inward from
garden-of-Eden states to the attractor and then clockwise
around the attractor cycle, as shown in Figure 7. Typically,
the vast majority of states in a basin of attraction lie on
transient trees outside the attractor, and the vast majority of
these states are garden-of-Eden states.

6. COMPUTING PRE-IMAGES
CA attractor basins are constructed with an algorithm that
directly computes the pre-images of network states [8,17].
The network is run backward in time, though backward tra-
jectories usually diverge. The reverse algorithm takes advan-
tage of the regularity of connections in 1D CA. It also works
for mixed-rule networks. Other reverse algorithms2 and
methods designed for more general discrete dynamical net-
works can also be applied to CA. Provided k << n, the CA
reverse algorithm is, in general, orders of magnitude faster

FIGURE 4

Space-time patterns from the same initial state showing interacting gliders, which are embedded in a complicated background. Left, cells by value.
Right, cells by neighborhood look-up, with the background filtered. The k = 3 rule 54 was transformed [8] to its equivalent k = 5 rule (hex) 0f3c0f3c,
n = 150.

FIGURE 3

Space-time patterns of a CA (n = 24, k = 3, rule 90). Twenty-four time-steps from an initial state with a single central 1. Two alternative presentations
are shown. Left, cells by value, light = 0 dark = 1. Right, cells colored (or shaded) according to their look-up neighborhood.
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than the brute force method, constructing an exhaustive
map resulting from network dynamics [15,17].

Some basic information on attractor basin structure can
be found by statistical methods, first applied by Walker [18],
as shown in Figure 8, and are appropriate for large net-

works. Trajectories are run forward from many random ini-
tial states looking for a repeat in the network pattern to
identify the range of attractor types reached. The frequency
of reaching a given attractor type indicates the relative size
of the basin of attraction, and other data, such as the num-

FIGURE 5

State-space and basins of attraction

For a network size n, an example of one of its states B might be 1010 . . . 0110.
State-space is made up of all 2n states, the space of all possible bit strings or
patterns.

Part of a trajectory in state-space, where C is a successor of B, and A is a
pre-image of B, according to the dynamics of the network.

The state B may have other pre-images besides A; the total number is the
in-degree. The pre-image states may have their own pre-images or none. States
without pre-images are known as garden-of-Eden states.

Any trajectory must sooner or later encounter a state that occurred previously—it
has entered an attractor cycle. The trajectory leading to the attractor is a transient.
The period of the attractor is the number of states in its cycle, which may be only
just one—a point attractor.

Take a state on the attractor; find its pre-images (excluding the pre-image on the
attractor). Now find the pre-images of each pre-image and so on, until all
garden-of-Eden states are reached. The graph of linked states is a transient tree
rooted on the attractor state. Part of the transient tree is a subtree defined by its
root.

Construct each transient tree (if any) from each attractor state. The complete graph
is the basin of attraction. Some basins of attraction have no transient trees, just
the bare “attractor.”

Now find every attractor cycle in state-space and construct its basin of attraction.
This is the basin of attraction field containing all 2n states in state-space but now
linked according to the dynamics of the network. Each discrete dynamical network
imposes a particular basin of attraction field on state-space.
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ber of basins, and the length of transients and attractor
cycles, are extracted. These various methods are imple-
mented in DDLab.

6.1. The CA reverse algorithm
Consider a 1D CA size n (indexed n 1 1 . . . 0) and neigh-
borhood k. To find all pre-images of a state A, let P be a
“partial pre-image” where at least k 1 1 bits (on the left), up
to and including Pi, are known. Now find the next unknown
bit to the right, Pi11, consistent with the rule-table. (● indi-
cates known, ✯ unknown, bits),

Pi+1 Pi Pi11

. . . partial pre-image P . . . ● ● ✯ compare the
outputs of

● Pi + 1, Pi , ✯ with
each other and

. . . known state A . . . Ai with Ai

If k = 3 (for example), the bit string Pi+1, Pi, ✯ corre-
sponds to two neighborhood entries in the rule-table. When
their outputs, T1 and T2, are compared with each other and

with Ai, there are three possible consequences. The permu-
tation is either deterministic, ambiguous, or forbidden.

1. Deterministic: If T1 Þ T2, then Pi11 is uniquely deter-
mined, as there is only one valid neighborhood with the
output Ai.

2. Ambiguous: If T1 = T2 = Ai, then both 0 and 1 are valid
solutions for Pi11. The partial pre-image must be dupli-
cated, with Pi11 = 0 in one version and Pi11 = 1 in the
other.

3. Forbidden: If (T1 = T2) Þ Ai, then Pi11 has no valid
solution.

I f forbidden (3), the partial pre-image P is rejected. If de-
terministic or ambiguous (1 or 2), the procedure is con-
tinued to find the next unknown bit to the right. How-

ever, in the ambiguous case (2), both alternative partial pre-
images must be continued. In practice, one is assigned to a
stack of partial pre-images to be continued at a later stage.
As the procedure is reapplied to determine each successive
unknown bit toward the right, each incidence of ambiguous
permutations will require another partial pre-image to be
added to the stack, though various refinements limit its
growth.

FIGURE 6

The basin of attraction field of the complex CA rule in Figure 1. n = 16, k = 7. The 216 = 65536 states in state-space are connected into 89 basins
of attraction. The 11 nonequivalent basins are shown, with symmetries characteristic of CA [8]. The period (p), percentage of state-space in each
basin type (s), and number of each type (t) of the biggest three basins (top row) are as follows: (1) p = 1, s = 15.7%, t = 1; (2) p = 5, s = 55.8%,
t = 16; (3) p = 192, s = 22.9%, t = 1. The field’s G-density = 0.451, lratio = 0.938, Z = 0.578.
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The procedure is continued to the right to overlap the
assumed start string, to check if periodic boundary condi-
tions are satisfied; if so, the pre-image is valid. The proce-
dure is reapplied to each partial pre-image taken from the
partial pre-image stack, starting at the first unknown cell.
Each time an ambiguous permutation (2) occurs, a new par-
tial pre-image must be added to the stack, but the stack will
eventually be exhausted, at which point all the valid pre-
images containing the assumed start string will have been
found. The procedure is applied for 2k11 start strings, as-

suming the different possible values of the first k 1 1 bits.
The reverse algorithm is applied from left to right in DDLab
but is equally valid when applied from right to left.

6.2. The Z parameter

A byproduct of the CA reverse algorithm is the probabil-
ity of the next unknown bit being deterministic (sec-
tion 6.1(1)). Two versions of this probability are cal-

culated from the rule-table: Zleft for the reverse algorithm
applied from left to right and Zright for the converse. The Z
parameter is the greater of these values. For Z = 1, it can be
shown [8] that for any system size n, the maximum in-
degree, Imax ø 2k11 because the next unknown bit is always
uniquely determined, so the assumed start string of length k
1 1 may generate at most 2k11 pre-images. If only one of
Zleft or Zright = 1, Imax < 2k11 because at least one assumed
start string must be forbidden (section 6.2(3)). At the other
extreme, for Z = 0, all state-space converges on the state
all-0s or all-1s in one step. For high Z, low in-degree (relative
to system size n) is expected in attractor basins, growing at
a slow rate with respect to n. Conversely, for low Z, high
relative in-degree is expected growing quickly with respect
to n. High Z predicts low convergence and chaos; low Z
predicts high convergence and order.

The 2k neighborhoods of size k, each indexed k 1 1 . . .
0, each has an ouput T (0 or 1) that makes up the rule-table
(section 2) and may be expressed as ak11, ak12, . . . a1, a0 →
T. To calculate Zleft from the rule-table, let nk be the count

FIGURE 7

A detail of the second basin of attraction in Figure 6. The states are shown as 4 × 4 bit patterns.

FIGURE 8

The attractor frequency histogram for the complex k = 5 rule
6c1e53a8, n = 50. The rule also appears in Figures 13 and 23. Max
attractor period = 150, min = 4, max average transient = 681,
min = 6.

© 1999 John Wiley & Sons, Inc. C O M P L E X I T Y 53



of rule-table entries belonging to deterministic pairs such
that,

ak11, ak12, . . . a1, 0 → T and
ak11, ak12, . . . a1, 1 → T (not T)

The probability that the next bit is determined because of
the above is given by Rk = nk/2k. This is a first approximation
of Zleft.

Let nk11 be the count of rule-table entries belonging to
deterministic 4-tuples (where “✯” may be 0 or 1), such that

ak11, ak12, . . . a2, 0, ✯ → T and
ak11, ak12, . . . a2, 1, ✯ → T

The probability that the next bit is determined because of
the above is given by Rk11 = nk11/2k. This count is repeated
if necessary for deterministic 8-tuples where Rk12 = nk12/
2k, 16-tuples, 32-tuples, . . . up to the special case of just one
2k-tuple that occupies the whole rule-table. These are
independent nonexclusive probabilities that the next bit
is determined. The union of the probabilities Rk ∪ Rk11 ∪
Rk12 . . . = Zleft is given by the following expression (the
order of the probabilities makes no difference to the result):

Zleft = Rk + Rk11(1 1 Rk) + Rk12(1 1 (Rk + Rk11(1 1 Rk)))
+ Rk13(1 1 (Rk12(1 1 (Rk + Rk11(1 1 Rk)))))
+ . . .

which simplifies to,

Zleft = Rk + Rk11(1 1 Rk) + Rk12(1 1 Rk11)(1 1 Rk)
+ Rk13(1 1 Rk12)(1 1 Rk11)(1 1 Rk) + . . .

and may be expressed as

Zleft = Rk + (i=1
k−1

Rk−1 ~)j=k−i+1
k

(1 − Rj))

where Ri = ni/2k and ni is the count of rule-table entries
belonging to deterministic 2k1i-tuples.3 A converse proce-
dure gives Zright, and the Z parameter is the greater of Zleft

and Zright. Examples are given in References 8 and 17.
By virtue of being a convergence parameter, Z is also an

order-chaos parameter varying from 0 (order) to 1 (chaos).
Z can be compared with Langton’s well-known l parameter
[11]. l is an order-chaos parameter for CA that may have
value greater than binary and measures the density of “non-
quiescent” outputs in a rule-table, so for just binary CA, l =
c/2k where c is the count of 1s in a rule-table on k inputs. l

varies between 0 (order) to 0.5 (chaos) to 1 (order). To allow
Z and l to be compared, a normalized version of binary l is
defined [8], lratio = 2 2 cmin/2k where cmin is the count of 0s

or 1s in the rule-table, whichever is less. lratio must be ùZ

and varies from 0 (order) to 1 (chaos), just as Z.

Plots of the G-density against both lratio and Z for the 256

k = 7 totalistic rules,4 showing the discrepancies as well as

similarities, are shown in Figure 9. Points plotted in the top

right corner of the lratio graph represent lratio values that do

not correspond to behavior as expected.

7. GLIDERS IN 1D CA
A large body of literature is devoted the study of space-time

patterns in CA. “Glider” or “particle” dynamics, where co-

herent configurations emerge and interact, provide a strik-

ing example of self-organization in a simple system. Glider

dynamics, and the rules that produce them, have been char-

acterized as “complex,” in contrast to ordered or chaotic, by

Wolfram [19]; that is, those rules yielding localized propa-

gating structures interacting within long transients, where

the interactions are clearly “interesting.” Perhaps the most

dramatic example is Conway’s 2D “game-of-life” [9], from

where the term “glider” is borrowed.

The human mind is extremely adept at recognizing pat-

terns and identifying those that seem complex and interest-

ing, but it would be extremely useful to have measures that

corresponded closely to our subjective classification. An en-

tropy variance measure on the dynamics seems to achieve

this, allowing an unlimited source of complex rules to be

found, and is further able to characterize rule-space relative

to our subjective notions of order, complexity, and chaos.

C omplex rules are supposed to be rare [10]. Most rules

are either ordered or chaotic (see Figure 13), though

ordered rules become increasingly rare for larger k. In

k = 3 rule-space, the only two sets of glider rules that occur,

rule 54 and 110, and their equivalents [8] (see Figures 4 and

14) have been the focus of particular study (e.g., [12]).

How a rule is placed within a notional order-complexity-

chaos space has depended largely on our subjective judg-

ment of typical emergent space-time patterns. Each CA rule

self-organizes its patterns in a characteristic way, and these

are often recognizable, especially for small k, where a char-

acteristic pattern is apparent even when chaotic, becoming

less obvious for larger k. The characteristic pattern of dif-

ferent rules can be analyzed in formal language theory as a

“regular language” with a vocabulary made up of bit se-

quences and a “grammar” made up of succession rules be-

tween sequences [10], and by a related “computational me-

chanics” approach [12].

Glider dynamics correspond to Wolfram’s complex class

4 behavior in his classification of CA dynamics [16]. Wol-

fram orders his classes according to a specific notion of

complexity, by the increasing complexity of typical space-

time patterns as measured in formal language theory, and
draws analogies with classical continuous dynamical sys-

54 C O M P L E X I T Y © 1999 John Wiley & Sons, Inc.



tems in terms of the attractors typical of each class. His
classes are as follows:

Class
CA dynamics evolves

toward . . .
Dynamical systems

analogue

1. A spatially homogeneous
state . . .

Limit points

2. A sequence of simple stable
or periodic structures . . .

Limit cycles

3. Chaotic aperiodic
behavior . . .

Chaotic (strange)
attractors

4. Complicated localized
structures, some
propagating . . .

Attractors unspecified

Langton [11] and others have argued that Wolfram’s
class 4 more naturally belongs between classes 2 and 3, at a
phase transition between order and chaos. Moreover, many
ordered rules have both limit points and short limit cycles,
though one or the other may predominate, suggesting that
class 1 and 2 may usefully be combined. For these reasons,
the classification is readjusted as follows:

ordered (class 1–2) 1 complex (class 4) 1 chaotic (class 3)

What are the essential features of glider behavior? Glider
dynamics occur if a limited set of gliders emerge from ran-
dom initial states and if the interactions between gliders

persist for an extended time, which requires that at least
some glider collisions create new gliders. Gliders are em-
bedded in a uniform or periodic space-time background or
“domain,” which of necessity has simultaneously emerged.
Such a regular domain may be simple (for example, a check-
erboard) or a have a more complicated pattern (see Fig-
ures 10–12).

Distinct chaotic domains may also occur, which cannot
support geometrically regular gliders but may support “do-
main walls” or “particles” [20], analogous to gliders. These
arise from defects within a chaotic domain (see Figure 16),
a boundary between two distinct chaotic domains, or be-
tween a chaotic and a regular domain. Domains may be
filtered as described in section 9 to show up gliders and
domain walls more clearly.

Gliders may be regarded as solitary waves within a regu-
lar domain and may have the special property of solitons
[21], preserving their shape and velocity after interacting
with other solitons. Glider velocity varies from 0 to a maxi-
mum “speed of light” of r cells per time-step toward the left
or right, where r is the number of cells on the left or right of
the target cell. A glider configuration that repeats at each
time-step (i.e., with period one) is limited to velocities of
0,1,2, . . . , r per time-step. Gliders with greater periods may
have intermediate fractional velocities. A glider’s attributes
are the regular domain pattern and spatiotemporal period

FIGURE 9

G -density against both lratio and Z for the set of k = 7 totalistic rules, n = 16, for Z ù 0.25. The complete basin of attraction field was generated
for each rule and garden-of-Eden states counted.
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(on both sides of the glider), the glider’s temporal period
and velocity, its changing diameter, and the list of its re-
peating configurations. The same description might be ap-
plied recursively to each subglider component of a com-
pound glider.

Collisions between two glider types often result in a third
glider type (or more). One or both gliders may survive a
collision with a possible shift in trajectory, or both gliders
may be destroyed. A collision may create a temporary cha-
otic phase before new gliders emerge. The outcome of a
collision is sensitive to the point of impact. A glider is often
a dislocation or defect of varying width in a domain, which
is out of phase on either side of the glider, analogous to a

fracture plane in a crystal lattice. Alternatively, a glider may
be seen as the zone that reconciles two out-of-phase do-
mains. A glider may separate two entirely different domains,
acting as the boundary, as in Figure 11(d). Gliders that eject
a stream of subgliders at regular intervals, as in Figure 11,
and gliders that survive by absorbing a regular glider stream,
as in Figure 10(d), are relatively common. They are analo-
gous to “glider guns” and “eaters,” some of the components
of the “game-of-life” universal computer [9]. Because a
regular glider stream is essentially the same as a regular
domain, a glider gun creates a domain, and an eater absorbs
it, so glider guns/eaters are equivalent to a glider forming
the boundary between two domains.

FIGURE 10

Interacting gliders with various velocities and backgrounds. 127 time-steps. The k = 5 rule numbers are shown in hex.

FIGURE 11

Examples of glider-guns. 127 time-steps. The k = 5 rule numbers are shown in hex.
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Both the period and diameter of a glider may be consid-
erable. The diameter may show a large variation within the
period. Clearly gliders can only emerge in systems large
enough to contain them, so that the samples described in
section 11 based on n = 150 are biased toward finding rela-
tively small diameter gliders.

The existence of compound gliders made up of subglid-
ers colliding periodically may be expected in large enough
systems. The example in Figure 12(a) shows a compound
glider made from two independent gliders locked in a cycle
of repeating collisions. Compound gliders could combine
into yet higher-order structures [3], and the process could
unfold hierarchically without limit. Once gliders have
emerged, CA dynamics could, in principle, be described at a
higher level, by glider collision rules as opposed to the un-
derlying CA rules.

8. INPUT-ENTROPY

K eeping track of the frequency of rule-table look-ups
(the k-block frequency, or “look-up frequency”) in a
window of time-steps provides a measure, the vari-

ance of input-entropy over time, which is used to classify 1D
CA automatically for a spectrum of ordered, complex, and
chaotic dynamics [22].

The look-up frequency can be represented by a histo-
gram (Figure 13) that distributes the total of n 2 w look-ups
amont the 2k neighborhoods (shown as the fraction of total
look-ups), where n = system size, w = the window of time-
steps defined, and k = neighborhood size. The Shannon
entropy of this frequency distribution, the “input-entropy”

S, at time-step t, for one time-step (w = 1), is given by S t =
1∑2k

i=1 (Qt
i / n 2 log (Qt

i / n)), where Qi
t is the look-up fre-

quency of neighborhood i at time t. In practice, the mea-
sures are smoothed by being taken over a moving window
of time-steps (w = 10 in Figure 13).

Figure 13 shows typical examples of ordered, complex,
and chaotic dynamics in 1D CA, with input-entropy plots
and a snapshot of the look-up frequency histogram along-
side. In a random initial state, the different k-blocks occur
with equal probability. The start entropy will be corre-
spondingly high. The typical evolution of the input fre-
quency histogram and input-entropy for ordered, chaotic,
and complex dynamics is described below.

Ordered Dynamics
In ordered dynamics, the look-up frequency histogram rap-
idly becomes highly unbalanced, with most neighborhoods
never looked at (their look-up frequency is 0). The few re-
maining high frequencies settle at constant or periodic val-
ues. The entropy will settle at a low constant or periodic
value, corresponding to a fixed point or short cycle attrac-
tor. Ordered behavior produces extremely short and bushy
transient trees with a high density of garden-of-Eden states
(G-density). Ordered rules decrease disorder and entropy.

Complex Dynamics
In complex dynamics, the look-up frequency histogram be-
comes unbalanced, with large erratic fluctuations reflected
in the entropy curve. As in ordered behavior, a proportion of
neighborhoods are never looked at again after the initial

FIGURE 12

(a) A compound glider. (b) A glider with a period of 106 time-steps. (c) A compound glider gun. 168 time-steps. The k = 5 rule numbers
are shown in hex.
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sorting-out phase. After an extended time, the system gen-
erally settles onto a short attractor cycle. The high frequency
neighborhoods correspond to the emergent domain(s); the
low frequency neighborhoods, to the interacting gliders.

G lider dynamics is subject to two countervailing ten-
dencies: on the one hand, there is a tendency toward
order caused by the predominance of domains. But

the domains are mobile; their boundaries form the gliders.
When these collide, there is a tendency toward chaos. In
systems of the size considered, order or chaos may pre-
dominate at different times causing the entropy to vary. For
large networks where colliding and noncolliding zones co-
exist, the entropy variance will be reduced to zero in the
limit of infinite size.

A measure of the variability of the input-entropy curve is
its variance or standard deviation.5 High entropy variance
for a significant number of time-steps implies complex
space-time dynamics. This includes not just glider dynam-
ics, but also the less frequent dynamics involving “domain
walls” in chaotic domains described earlier in this section.

Chaotic Dynamics
In chaotic dynamics, the look-up frequency histogram will
fluctuate irregularly within a narrow band of low values, and
the entropy will fluctuate irregularly within a narrow high
band, corresponding to dynamics on very long transients or
cycles, analogous to strange attractors in continuous dy-
namical systems. Transient trees will be sparsely branched,
thus will tend to be very long with relatively low G-density.
Chaotic rules increase or conserve disorder and entropy.

FIGURE 13

Typical 1D CA space-time patterns showing ordered, complex, and chaotic dynamics (n = 150, k = 5). Alongside each space-time pattern
is a plot of the input-entropy (center column) and a snapshot of the look-up frequency histogram averaged over the last 10 time-steps. Only
complex dynamics (center row) exhibits high input-entropy variance.
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9. FILTERING
Current methods for filtering domains in CA space-time

patterns are based on a “computational mechanics” ap-

proach [12,20]. An alternative is a byproduct of keeping

track of the look-up frequency described in section 8. The

frequencies of rule-table look-ups in a moving window of

time-steps are recorded. They are also displayed as a chang-

ing histogram (Figures 13, 15). The size of the window is 10

for the examples in Figures 14 and 15.

To filter background domains, successive key presses in

DDLab will progressively suppress the printing of cells that

updated with reference to the currently most frequent un-

suppressed neighborhood. A dot is shown alongside the

look-up frequency histogram indicating which neighbor-

hoods are currently suppressed. The routine can be contin-

ued until all neighborhoods are filtered, and reversed to

progressively unfilter. Particular neighborhoods can be fil-

tered in isolation. Filtering can be done on-the-fly in

DDLab for any rule, including 2D and 3D CA [15].

For most glider rules, only a few neighbourhoods need to

be suppressed to filter domains. Rules with very compli-

cated domains, such as the k = 3 rules 54 and 110, must first

be transformed to equivalent rules [8] with greater k (k = 5

in this case) for successful filtering, which requires sup-

pressing a number of the k = 5 neighborhoods (see Figures

4, 14, and 15).

Discontinuities may occur within chaotic domains that

nevertheless have regularities in their “pattern basis” [20],

as in the k = 3 rule 18 (see Figure 16), or between two distinct

chaotic domains, or between chaotic and regular domains.

These types of domains can also be filtered to uncover the

“domain walls” or “particles,” analogous to gliders.

FIGURE 14

Examples of filtering space-time patterns to show up gliders more clearly. Left and center, space-time patterns of the k = 3 rule 110, transformed
to the equivalent [8] k = 5 rule 3cfc3cfc, n = 150, from the same evolved initial state. Left, cells by value. Center, cells by neighborhood look-up
and filtered. Right, space-time patterns of the k = 5 rule 360a96f9 from a random initial state. Cells are shown by neighborhood look-up and are
progressively filtered in two stages. About 200 time-steps are shown in each case.

FIGURE 15

Look-up frequency histograms relating to Figure 14. Above, k = 5
rule 360a96f9. Below, k = 3 rule 110 transformed to k = 5 rule
3cfc3cfc. Suppressed neighbourhoods are indicated with a dot.
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10. ENTROPY-DENSITY SIGNATURES
A related method of visualizing the entropy vari-
ance is to plot input-entropy against the density of
1s relative to a moving window of time-steps. Su-
perimposed plots for a number of complex rules are
shown in Figure 17. Each rule produces a charac-
teristic cloud of points that lie within a parabolic
envelope because high entropy is most probable at
medium density, and low entropy at either low or
high density. Each complex rule produces a plot
with its own distinctive signature, with high input-
entropy variance. Chaotic rules, on the other hand,
give a compact cloud at high entropy (at the top of
the parabola). For ordered rules, the entropy rap-
idly falls off with very few data points because the
system moves rapidly to an attractor.

Gutowitz [23] has also shown entropy-density
plots for large samples of rule-space, but his plots
show a single point for each rule where the mea-
sures on that rule have settled down, whereas the
plots shown here focus on the transient history of
the system. These plots distinguish order, complex-
ity, and chaos by the vertical extent and density of
the cloud.

11. AUTOMATICALLY CLASSIFYING RULE SPACE
To distinguish ordered, complex, and chaotic rules
automatically, the mean input-entropy taken over a
span of time-steps is plotted against the standard
deviation of the input-entropy. Figures 18 and 19

FIGURE 16

Unfiltered and partly filtered space-time patterns of k = 3 rule 18 (transformed to k = 5 rule 030c030c). n = 150, about 130 time-steps from the
same random initial state, showing discontinuities within the chaotic domain.

FIGURE 17

Entropy-density scatter plots. Input-entropy is plotted against the density of 1s
relative to a moving window of time-steps w = 10. k = 5, n = 150. Plots for a
number of complex rules from the automatic sample (section 11) are show
superimposed, each of which has its own distinctive signature, with a marked
vertical extent (i.e., high input-entropy variance). About 1,000 time-steps are
plotted from several random initial states for each rule.
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summarize how random samples of k = 5, 6 an 7 rules where
classified by this method. For each rule, the data were gath-
ered from 5 runs from random initial states, for 430 time-
steps, discounting the first 30 to allow the system to settle,
with w = 5 as the size of the moving window of time-steps.
The measures were averaged, and a point was plotted of
mean input-entropy against the standard deviation of the
entropy as shown in Figure 18 for the k = 5 sample.

To see the frequency distribution of rules, the plots in
Figure 19 include an extra axis, making a 2D histogram,
representing the number of rules falling within blocks on a
128 2 128 grid overlaid over the scatter plot. Looking at the
k = 5 2D histogram, the “tower” in the upper left represents
chaotic rules with low standard deviation and high mean
entropy. The ridge on the left represents ordered rules with
low standard deviation and a spread of lower mean entropy.
Complex rules have higher standard deviation and are
spread out toward the right. There is a low diagonal valley
between the tower and the ridge representing a distinct
boundary between ordered and chaotic rules, but a gradual
transition from both toward the complex rules. As the stan-
dard deviation decreases glider interactions become either
more frequent, transients longer, tending toward chaos, or
less frequent, transients shorter, tending toward order. The
k = 6 and k = 7 plots show an increasing frequency of chaotic

rules and a declining frequency
of ordered and complex rules as
k increases. The decrease in or-
dered rules is especially marked.

The rule samples and mea-
sures, including each rule’s l

and Z parameters, were sorted
by decreasing standard devia-
tion and decreasing mean en-
tropy for each measure of stan-
dard deviation and saved to file.
Examples of complex rules from
the samples are shown in Figure
20. More examples are pre-
sented in Reference 17, and are
all available with the DDLab
software [14]. Figure 21 shows
the same k = 5 rules sample
p l o t t i n g t h e Z - p a r a m e t e r
against standard deviation.

To check whether the ex-
pected dynamics (recognized
subjectively) correspond to the
measures as plotted, the dy-
namics of particular rules at dif-
ferent positions on the plots
may be examined very effi-
ciently in DDLab, for example,
with a mouse click on the plots

in Figures 18 or 21. For the mean entropy-standard devia-

tion plot (Figure 18), preliminary scans indicate that the

expected behavior is indeed found, but further investigation

is required to properly demarcate the space between or-

dered, complex, and chaotic rules and to estimate the pro-

portion of different rule classes for different k.

For the Z parameter-standard deviation plot (Figure 21),

there is an approximate correlation between low Z and or-

der, and high Z and chaos, especially at the extremes. At

medium Z, between about 0.5 and 0.75, where most ran-

domly selected rules, and also complex rules, tend to occur,

the correlation becomes weaker, Z distinguishes between at

least the extremes of order and chaos, and sets a band out-

side which complex dynamics becomes increasingly

unlikely.

The automatic samples were generated by DDLab [14].

This may be done for larger system size n and neighborhood

k, and the various other parameters may be adjusted. These

local measures may be compared to global measures on

convergence in attractor basins described in section 12.

12. ATTRACTOR BASIN MEASURES
Measures on attractor basins include the number of attrac-

tors, attractor periods, size of basins, characteristic length of

FIGURE 18

Classifying a random sample of k = 5 rules by plotting mean entropy against the standard deviation of
the entropy. Any standard deviation above the maximum scale has been rescaled to the maximum
of 0.18.
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transients, and the characteristic branching within trees.

The last in particular gives a good measure of the conver-

gence of the dynamical flow in state-space.

T he simplest measure that captures the degree of con-

vergence is the density of garden-of-Eden state [24],

G-density, counted in attractor basins or subtrees, and

its rate of increase with n as shown in Figure 22. A more

comprehensive measure is the in-degree frequency distri-

bution, plotted as a histogram. The in-degree of a state is

the number of its immediate pre-images. This can be taken

on attractor basins, on just a subtree, or on part of a subtree

for larger systems. Subtrees are portrayed as graphs show-

ing trajectories merging onto the subtree root state.

Examples of in-degree histograms for a typical subtree

for ordered, complex, and chaotic rules are shown in Figure

23. The horizontal axis represents in-degree size, from zero

(garden-of-Eden states) upward, the vertical axis represents

the frequency of the different in-degrees. The system size n

= 50 for the complex and chaotic rules. For very ordered

rules, in-degrees become astronomical. The ordered rule

shown is only moderately ordered; however, the system size

was reduced to n = 40 to allow easier computation.

From the preliminary data gathered so far, the profile of

the in-degree histogram for different classes of rule is as

follows:

Ordered: Very high garden-of-Eden frequency

and significant frequency of high in-degrees. High

convergence.

Complex: Approximates a power law distribution.

Medium convergence.

Chaotic: Lower garden-of-Eden frequency compared

to complex rules, and a higher frequency of low in-

degrees. Low convergence.

Issues for further investigation are: a systematic look at

the in-degree histogram profiles relative to rules at various

positions on the mean entropy/standard deviation scatter

plots, how profiles change with system size, if a subtree

fragment is representative of the dynamics as a whole, if the

FIGURE 19

Left, classifying a random sample of k = 5
rules by plotting mean entropy against stan-
dard deviation of the entropy, with the fre-
quency of rules within a 128 × 128 grid shown
vertically. Below, equivalent plots for samples
of k = 6 and 7 rules.
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profile changes for subtrees deep in a basin of attraction as

opposed to close to the outer leaves, and to look at the part

of subtrees close to particular trajectories (within a given

distance in reverse time-steps), especially in relation to

glider dynamics.

13. GLIDER INTERACTIONS AND BASINS OF ATTRACTION

I t is possible to identify classes of configurations that

make up different components of attractor basins in

glider rules. In random states, configurations occur with

equal probability, so the special glider/background configu-

rations are unlikely. Nonglider/background states make up

the majority of state-space and are likely to be garden-of-

Eden states or states just a few steps forward in time from

garden-of-Eden states. They occur in the initial sorting-out

phase of the dynamics and appear as short bushy dead-end

side branches along the length of long transients, as well as

at their tips.

States dominated by glider and background and configu-

rations are special cases, a small subcategory of state-space.

They constitute the glider interaction phase, making up the

main lines of flow within the long transients. This has also

been noted by Domain [25], who described the main lines of

flow as the topological skeleton of physically relevant states

and the short dead-end side branches from garden-of-Eden

states as a skin of nonphysical transitional states, compris-

ing the bulk of the states in an attractor basin.

Gliders in the interaction phase can be regarded as com-

peting subattractors, with the final survivors persisting in

the attractor cycle. Finally, states made up solely of nonin-

teracting gliders (i.e., having equal velocity), or domains free

of gliders, must cycle and therefore constitute the relatively

short attractors, with a period depending on the glider

FIGURE 20

Examples of k = 5, 6, and 7 complex space-time patterns, with high standard deviation, from the automatic samples. n = 150, 150 time-steps from
random initial states. Cells are colored according to the neighborhood.
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velocity. The attractor states are made up of gliders, com-
pound gliders, or just domains, and thus form a tiny sub-
category of state-space. By simply looking at the space-time
patterns of a glider rule from a number of different initial
states, most gliders in its glider repertoire (relative to the
system size) may be identified. A complete list would allow
a description of most of the attractors by finding all possible
permutation of noninteracting gliders.

14. DISCUSSION
Complex behavior in 1D CA, especially the emergence of
gliders, mirrors our intuitive notion of complex forms and
processes emerging in nature. These are arguably the sim-
plest systems where complex phenomena arise. Their sim-
plicity allows a description of global as well as local behavior
and how this varies across rule-space.

A global perspective on CA dynamics and rule-space is
provided by the notion of attractor basins. The basin of
attraction fields of complex rules are typically composed of
moderately bushy transient trees rooted on relatively short
attractor cycles. Gliders interacting aperiodically belong to
the main lines of flow within the transient trees. Configu-
rations where gliders interact periodically, or have ceased to
interact, make up the attractor cycles.

Gliders have a distinct identity. Their interactions are
predictable. A collision table could be formulated empiri-
cally, without knowing the underlying rule-table mecha-
nism. The collision table would probably need to hold much
more information than the rule-table. It would need to de-
scribe all possible collisions at different points of impact
between gliders. However, compared to the rule-table, the
collision table would provide a far more useful description
of established behavior, enabling some prediction of the sys-

tem’s future evolution, though only the rule-table could ac-
count for the origins of gliders, their emergence by a process
of self-organization from random patterns.

Interacting gliders may combine to create compound
gliders, interacting at yet higher levels of description, and
conceivably the process could unfold hierarchically without
limit in large enough systems. This is analogous to describ-
ing matter in terms of chemistry as opposed to the under-

FIGURE 21

The same random sample of k = 5 rules as in Figure 18, left the Z parameter against standard deviation of the entropy and right with a vertical frequency
axis as in Figure 19.

FIGURE 22

The G-density plotted against system size n for the ordered, com-
plex, and chaotic rules shown in Figures 13 and 23. The entire
basin of attraction field was generated for n = 7 to 22, and garden-
of-Eden states counted. The relative G-density and rate of increase
with n provides a simple measure of convergence.
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lying subatomic particles, or in terms of biology as opposed
to the underlying chemistry. There are any number of fur-
ther analogies that might be drawn from nature or society.
However, the origins of the higher-level entities must refer
to the lower level. According to this approach, a system’s
complexity is the number of levels of description that un-
derpin it in a descending hierarchy.

An unlimited source of complex rules that support glid-
ers is available by the automatic method described, based
on local measures, in particular input-entropy variance,

which also classifies rule-space for a spectrum of ordered,
complex, and chaotic dynamics. Global measures, G-
density, and in-degree frequency, taken on attractor basins
and subtrees, relate to the local measures. Both local and
global measures relate approximately to the rule parameter
Z. Further systematic investigations of both the local and
global measures, based on the automatic rule samples, and
extended samples are needed for a deeper understanding of
CA rule-spaces. The computer tools for such an investiga-
tion are largely in place.

FIGURE 23

Ordered—complex—chaotic CA dynamics. The space-time patterns of the rules are shown in Figure 13. The in-degree histogram of a typical
subtree shown in normal and log-log form.

Ordered dynamics. Rule 01dc3610, n = 40, Z = 0.5625, lratio = 0.668. Right: The complete subtree 7
levels deep, with 58153 nodes, G-density = 0.931.

Complex dynamics. Rule 6c1e53a8, n = 50, Z = 0.727, lratio = 0.938. Right: The subtree, stopped after
12 levels, with 144876 nodes, G-density = 0.692.

Chaotic dynamics. Rule 994a6a65, n = 50, Z = 0.938, lratio = 0.938. Right: The subtree,
stopped after about 75 levels, with 9446 nodes, G-density = 0.487.
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The Software
Discrete Dynamics Lab (DDLab) was used for the com-
putations, examples, figures, and data in this article. The
software is available at: www.santafe.edu/∼wuensch/
ddlab.html.

NOTES
1. “Chaotic” is used here by analogy only to its meaning in chaos

theory, although there are many common properties, for example,
sensitivity to initial conditions.

2. An alternative algorithm is required for random Boolean networks
(RBN) with their nonlocal connections and possibly mixed k. This
algorithm also applies to CA of any dimension or geometry, as CA are
just a subclass of RBN. A more general exhaustive method also
applies to random directed maps [15,17].

3. Acknowledgment and thanks to Guillaume Barreau and Phil Hus-
bands at COGS, University of Sussex, for deriving this expression.

4. The 256 k = 7 totalistic rules reduce to 136 nonequivalent rules in 72
clusters, having equal lratio and Z [17].

5. The standard deviation is given by s = √∑n
i=1 xi

2 / n where xi is the
deviation of each measure from the mean, and n is the number of
measures. The variance is s2.
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